
A DYNAMIC RECONFIGURABLE FABRIC FOR PLATFORM SOCS

C. Papachristou, J. Weaver, R. Vijayakumar and F. Wolff

Department of Electrical Engineering and Computer Science
Case Western Reserve University

Cleveland, Ohio 44106

1. ABSTRACT

A dynamic coarse-grained reconfigurable architecture which tar-
gets computationally intensive applications like multimedia and
wireless applications is presented. Fundamental features of the
architecture are an interconnection matrix, switch buffers, func-
tional units, and a controller. Important aspects of the architec-
ture is dynamic datapath reconfiguration over each control step
of the application. Simulations of several classes of applica-
tions with results are also presented. Results of Xilinx Virtex 4
Implementations are provided.

2. INTRODUCTION & MOTIVATION

Motivation. VLSI chip functionality has traditionally concen-
trated into two device categories, microprocessor and ASIC (Ap-
plication Specific Integrated Circuits). ASICs have high perfor-
mance but are rigid addressing a specific application, whereas
microprocessors are flexible for general-purpose applications.
A third category, FPGAs (Field Programmable Logic Arrays)
provide, through programmable logic, good flexibility but lower
performance. However, present system on chip (SOC) technol-
ogy pulls together ASICs, microprocessors and FPGAs into a
single polymorphic multiple core chip design. SOC technol-
ogy is well suited for many new compute-intensive applica-
tions such as signal and image processing, visualization, wire-
less communications, and networking.
There is an important need for reconfigurable hardware in future
SOC applications. For example, SOC products will be wireless
communicating with powerful servers for applications. Opti-
mizing performance while maintaining low power consumption
will depend on the SOC ability for quick or even dynamic re-
configuration.

There are two emerging trends for SOC configurability. a)
Platform FPGAs which integrate into a large FPGA structure
microprocessor cores, ASIC blocks (e.g. hardwired multipliers)
and memories. b) Platform SOC integrating microprocessor,
ASICs and memory cores but also reconfigurable hardware fab-
rics. Platform FPGAs are reconfigured using the FPGA struc-
ture; however, configuration of Platform SOCs can be done by
the reconfigurable hardware. Platform FPGAs have the advan-
tage of platform stability, but they are tied to the vendor’s offer-
ings. It appears that Platform SOC fabrics are more suitable for
implementing multiple core systems because they are more flex-
ible, potentially can consume less power, and are amenable to
dynamic or even autonomous reconfiguration. In such an envi-
ronment, a reconfigurable datapath core could be driven to data

intensive applications whereas a microprocessor core to other
functions.
Contribution. In this paper we present a new coarse grain re-
configurable architecture fabric based on a switch buffer matrix
connecting functional unit blocks that operate in parallel. The
fabric is well suited for integration into a platform SOC of a
multicore system, particularly to accelerate computation inten-
sive applications. The fabric is scalable in terms of functional
units but also at the bit level in that functional units can be bit-
sliced using and connected through the same switch matrix. We
also present a design synthesis technique for mapping applica-
tions into the reconfigurable fabric. The mapping has been im-
plemented and tested using several High Level Synthesis tools
as well as new tools we developed. We have prototyped our
architecture into the Xilinx Virtex IV platform, including simu-
lation and implementation of benchmark applications.

3. RECONFIGURABLE ARCHITECTURE

The basic idea of the reconfigurable fabric is a distributed set of
programmable processing tiles that are capable of instantaneous
dynamic reconfigurability, Fig. 1. A tile consists of three types
of hardware units or resources, i.e. functional unit, a distributed
switch buffer matrix, and local control unit. All hardware re-
sources are connected together through a loop of bus-line inter-
connects. The functional units are configurable to perform ba-
sic arithmetic/logic functions such as Add, Subtract, Multiply.
The controller is normally fine grain so it can be implemented
using conventional FPGA technology. The routing of data be-
tween the switch buffers and functional units are carried out by
the switch buffer matrix, e.g. a sort of cross bar, which is em-
bedded in the tile. A programmable tile goes much beyond the
current FPGA technology. A tile achieves a middle grain con-
figuration by efficiently allocating its resources, i.e. functional
units and switch buffers as well as their interconnects. Configu-
ration occurs within a tile and along several tiles, which can be
interconnected into a reconfigurable fabric.

Basically, tiles are suitable for efficiently implementing ap-
plication function modules such as the FIR filter, FFT, DCT and
convolution coder. There are two related problems that have
been addressed in this research: (i) mapping a function mod-
ule into a tile; (ii) reconfiguring dynamically a tile for another
function module. For the mapping problem, we propose to use
the following 2-phase design process: a) data flow transforma-
tion of the function description (e.g. C code) into a resource
scheduled graph, b) allocation of data flow elements into the tile
hardware resources (operators, cache and interconnects, Fig. 1).

Function

. . .
Unit Unit Unit

Control

Function Function

Interconnect Structure

Configuration Switch Buffer Matrix

Fig. 1. Reconfigurable Tile

The above process is in a way similar to the microarchitecture
synthesis process, thus we intend to leverage our extensive work
we have done in this area, [1]. Using the above process, we can
derive the configuration matrix which is a time vs. resource
chart describing the mapping. Clearly, the configuration matrix
can be precomputed to be readily available for dynamic load-
ing. Loading the configuration matrix into the tile initiates the
application.

One important feature that distinguishes our proposed re-
configurable hardware from FPGAs and DSPs concerns the abil-
ity to configure the hardware datapath bit-length. We use a bit-
slice approach to build flexible bit-length functional units to-
gether with their interconnects. Thus applications that demand
unusual bit lengths such as 22 bits or 36 bits will be accom-
modated by dynamically configuring tiles to match these bit
lengths. This is a real advantage of our proposed tiles with re-
spect to both FPGAs and DSPs, because one would need a fixed
32-bit DSP to accommodate applications with irregular 22 bit-
length, and would be unable to do 36 bits. At the same time,
to scale an FPGA to that bit-length may require using far away
logic blocks in the chip incurring delay overheads.

The reconfigurable hardware fabric is assembled by hierar-
chically connecting tiles into a tree structure with the tiles being
the leaf nodes of the tree. This hierarchy provides good scalabil-
ity of the fabric for expansion. It is important both for mapping
and for dynamic reconfiguration of tiles within the fabric. Idle
tiles can be turned off to reduce power.

Dynamic Configuration
We use a switch matrix in every tile to interconnect the func-
tional units and I/O channels, Fig. 2. Every row is connected
to an functional unit output or input channel, and every column
to an functional unit input or output channel. I/O channels are
not shown in detail. The matrix rows and columns are connected
only through switching elements shown in Fig. 2. Actually each
switching element consists of 2 switches and a FIFO data buffer
queue in between. This accommodates the READ and WRITE
phases of each functional unit, respectively. More details are in
Fig. 3, where the first switch enables a buffer WRITE and the
second a buffer READ, respectively.

The data buffer queues hold variable values coming from
a source functional unit, stored for the lifespan of the variable,
and used by the destination functional unit. A buffer queuen can
hold several variable values in sequential order. The role of the
switches is to enable WRITE/READ datapath segments. The
switch matrix mechanism in Fig. 2 avoids WRITE conflicts be-
cause every WRITE switch in Fig. 2 is associated with a unique
functional unit output. However, READ buffer conflicts are pos-
sible. This occurs when two variables with conflicting lifespans
are stored in the same buffer. These conflicts can be avoided by

 unit unit unit
Function

O
ut

pu
t

C
ol

um
ns

Input Rows

Function Function

Controller

Fig. 2. Dynamic Reconfiguration Switch Buffer Matrix

FIFO

D
ata B

u
s

Data BUFFER

FIFO
Config

Switch
READ

Switch
WRITE

Data Bus

Config

Fig. 3. Parallel Switch Buffers

a) scheduling and allocating the application operations under
the above lifespan constraint; b) use a prioritized buffer mecha-
nism based on the READ time tag of the stored variables. The
details are discussed in the next section. Buffer overflow needs
to be investigated further.

In addition to the data buffer, each WRITE and READ switch
has also a control buffer, or FIFO, which holds WRITE and
READ configuration information, respectively. Every FIFO bit
corresponds to a control step of the particular application run-
ning in the tile. Note that if the units are multifunctional, then
additional control FIFOs are needed for each functional unit,
in like manner to the switch FIFOs of Fig. 3. The proposed
scheme allows for variable latency operations, however, latency
information should be reflected in the FIFO bitstreams of the
switches.

Shown in Fig. 4 is a proposed approach to dynamic config-
uration. Assume that an application has been precompiled and
loaded into the Configuration memory as a binary. Note that
the Configuration memory can be structured into long words
with each word corresponding to the entire switch matrix of a
tile. Further, each long word is partitioned into data fields where
each field corresponds to a particular switch FIFO of the matrix.
Note, if the application demands longer execution time, then we
may need several long words in the Configuration memory for
the application. Configuring the application on the tile amounts
to shifting the data fields into the FIFOs as shown in Fig. 4.

4. APPLICATION MAPPING TECHNIQUE

We begin with an initial representation of an application in a
hardware design language such as VHDL. We parse the VHDL
into an intermediate representation, i.e. a Control/ Data flow
graph (CDFG) and then schedule the CDFG using a scheduling
method and tool that we have developed in our earlier work [17].
Note that for the VHDL parsing and CDFG scheduling there are
many well known methods and tools developed in High Level
Synthesis works [18] that can be used as well.

C
o

n
tr

o
lle

r

Memory
Conf

Register

Config

Memory

FIFO

Fig. 4. Configuration Memory

(6)

OP1 OP2

OP3 OP4

OP5

OP6 OP7

OP8 OP9

OP10

V1
V2

O4V3

V5

V6

V8

V7

O9

O10

I2 I1 I3 I4

I4
I2

I1

I3 I5 I1 I2

I2 I5

(0)

(1)

(2)

(3)

(4)

(5)

Fig. 5. Simple SCDFG

One of our contributions in this paper is a Resource Allo-
cation technique mapping the operations and variables of the
scheduled CDFG (SCDFG) into the architecture resources, i.e.
the functional units (FU) and the switch buffers, respectively.
We describe our mapping method briefly using a simple exam-
ple of a SCDFG, Fig. 5.

Our mapping consists of two phases. In the first phase, we
allocate functional units and data buffer queues. In the sec-
ond phase, we use allocation transformations to resolve variable
conflicts, if any, and minimize resource costs.

Phase I. Resource Allocation
1) Functional Units. The SCDFG is used to assign each

scheduled operation, OPi, to a functional unit, FUj, that can per-
form the specific task at the assigned timestep, T(OPi). The re-
sults of the functional unit allocation for our example are shown
in Table 1. The first column indicates the timestep at which an
operation was assigned. The second and third columns show the
list of operations allocated to each of the functional units, FU1
and FU2, in the matrix. After the functional unit allocation, the
inputs and outputs of each operation in the SCDFG are used to
allocate the data buffer queues in the switch buffer matrix.
2) Data Buffer Queues. As described above, data buffer queues

hold temporary data generated from functional units to be used
as inputs to other operations. If an output of a scheduled oper-
ation is a temporary variable, it is allocated to the data buffer,
DBi,j,k, where i is the functional unit that produces the tempo-
rary data, j is the functional unit that consumes the temporary
data, and k is the corresponding functional unit input, L(eft) or
R(ight). For example, the operation, OP6, in Fig. 5 produces
V6, which is a temporary variable. Because OP6 is allocated
to FU1 and the temporary variable is used for the left input of

Table 1. Initial FU Alloc
T FU1 FU2

1 OP1 OP2

2 OP3 OP4

3 OP5

4 OP6 OP7

5 OP9 OP8

6 OP10

Table 2. Alloc after Move
T FU1 FU2

1 OP1 OP2

2 OP3 OP4

3 OP5

4 OP6 OP7

5 OP9 OP8

6 OP10

OP8, which is allocated to FU2, V6 is allocated to DB1,2,L.

Table 3. Initial Data Buffer Allocation
T D

B
1
,1

,L

D
B

1
,1

,R

D
B

2
,1

,L

D
B

2
,1

,R

D
B

1
,2

,L

D
B

1
,2

,R

D
B

2
,2

,L

D
B

2
,2

,R

1 V1 V2

2 V1 V3 V2

3 V3 V5

4 V7 V5, V6

5 V7 V5, V6 V8

6 V5 V8

Table 3 shows the allocation of the data buffer queues for
the SCDFG in Fig. 5. The first column indicates the timestep
at which the variables are allocated. The remaining columns
each represent a data buffer queue in the matrix and show the
variables that are allocated to each. Phase I terminates when
all operations and their corresponding inputs and outputs are
allocated to the switch buffer matrix.
Phase II. Conflict Resolution

After Phase I, the initial allocation is reviewed for read con-
flicts within the switch buffer matrix. A read conflict occurs
when the lifespan of one variable, L(Vi), fully covers the lifes-
pan of one or more other variables, L(Vj)..., in the same buffer
queue. The initial allocation in Table 3 shows a read conflict in
data buffer, DB1,2,L. The variable, V5, has a lifespan, L(V5),
from timestep 3 through timestep 6, whereas, the variable, V6,
has a lifespan, L(V6), from timestep 4 through timestep 5. A
read conflict occurs because L(V5) fully encompasses L(V6).
To solve read conflicts, three transformations are used:

A) Swapping Inputs. This transformation swaps the inputs
of a commutative operation by moving the left input to the right
input and vice versa. Each input will then belong to a new buffer
queue with the prerequisite that no read conflicts occur after the
swap.

Table 4. Swap Transformation
T . . . DB1,2,L DB1,2,R DB2,2,L DB2,2,R

1
2
3 V5

4 V6 V5

5 V6 V5 V8

6 V5 V8

Table 4 shows the new data buffer queue allocation after
this transformation is used to solve the read conflict created by
V5. V5 moved from DB1,2,L to DB1,2,R, and V8 moved from
DB2,2,R to DB2,2,L. Both V5 and V8 are inputs to operation,

OP10. However, the buffer queue cost is increased by one be-
cause V5 moved to an empty data buffer queue.

B) Moving Operations. This transformation moves an op-
eration, OPi, from its current functional unit, FUj , to another
functional unit, FUk. If FUk is allocated to another concurrent
operation, OPc, then OPc moves to FUj . The prerequisite is
that no read conflicts occur after the move. Tables 2 and 5 show

Table 5. Move Transformation
T DB1,1,L DB1,1,R DB2,1,L DB2,1,R DB1,2,L . . .
1 V1 V2

2 V1 V3 V2

3 V5 V3

4 V5 V7 V6

5 V5 V7 V8 V6

6 V5 V8

the new data buffer queue and functional unit allocation after
the read conflict fromV5 is solved by this transformation. OP10
was reallocated to FU1 and its inputs, V5 and V8, moved from
DB1,2,L to DB1,1,L and from DB2,2,R to DB2,1,R, respec-
tively. The buffer queue cost is decreased by one because both
V5 and V8 moved to previously allocated data buffer queues.

C) Moving Predecessors. This transformation moves the
predecessor of an operation, P(OPi), to another functional unit.
This transformation is similar to (B), but it has the effect of
moving data to other buffer queues not reached by combining
(A) and (B).

Phase II terminates once the three transformations described
above are applied to all read conflicts in the initial resource al-
location.

5. RESULTS

The Mapper Program, written in Java, integrates the SYNTEST
Parser and Scheduler, developed in our earlier work [1], with
the new Resource Allocator and Conflict Resolver algorithms.
A standard VHDL description file is given to the Parser, which
generates an Unscheduled Data Flow Graph (UDFG). The UDFG
is then passed to the Scheduler which produces a Scheduled
Data Flow Graph (SDFG). The Resource Allocator and Conflict
Resolver algorithms then use the SDFG to allocate resources
onto a switch buffer matrix. After the allocation is completed,
a bit-level microcode is generated from the control bit strings
created from the buffer queue allocation tables. The microcode
is stored in a binary file that is used for simulation and synthesis
of the FPGA and ASIC implementations.

We implemented the architecture both in Xilinx Virtex IV
and derived results on several benchmark applications. We de-
scribe the architecture and its basic components in VHDL and
use configuration memories to store the microcode control val-
ues for the switch buffer FIFOs and the functional unit opcodes.

The VHDL implementations of the different applications in
Xilinx and Synopsys Design Analyzer are carried out on Sun
Blade 1000. We used the Xilinx ISE 7.1 tools to target the ap-
plications to Virtex 4. We followed two target approaches. In
the first approach, we used a fixed bit-width for the application
datapath, fixed to 8 bits. In the second approach, we used bit-
slicing based on 4-bit architecture slices that can be configured

together to form 8-bit, 12-bit and so on structures. We used a
clock period of 10 ns for implementation for all the results.

Table 6 shows the results of the Xilinx implementations of
the applications using the fixed bitwidth approach. It provides
the targeted Virtex 4 part, the critical stage delay, the actual
time to perform a schedule step in the application and finally the
amount of utilization of LUTs and Slices for each application.
The applications are targeted to the least cost Virtex 4 part, in
which they would fit. Recall in Fig. 2 the schedule step consists
of reading data from data buffers and passing it to the functional
units for computations and write step, where the computed de-
lay values are passed to the data buffers for storage. The delay
value from Xilinx is the sum of these two values. From this ta-
ble, we could see that as the number of time steps and the func-
tional units in the application increased, the next bigger part had
to be chosen, thereby increasing the cost of the implementation.

Table 7 shows the results of the Xilinx implementations us-
ing the bit slice approach. The table gives us the same kind of
results as above. Using the bit slice approach, we were able
to find that the same applications needed a bigger part to fit the
same application, keeping the hierarchy of the architecture. Xil-
inx tools were able to partition the two 4 bit structures and com-
bine them to produce the 8 bit data width architecture. Since
the same application had to be targeted to a bigger part, the cost
of implementing the same application went up as compared to
the fixed bit data width approach. To test multiple and con-
current applications, we combined three examples, the Bpfilter,
DCT and Wave filter, to make a multiple schedule. This sched-
ule was optimized for the number of time steps and functional
units then implemented in Xilinx, and the results of the various
values are shown in Table 6 under Multiple Schedule.

Table 6. Results in Xilinx using fixed bitwidth approach
Applic. Virtex 4 Delay Schedule Time Steps % Utilization

Actual Xilinx LUTs % Slice

Elliptic xc4vfx20 5.65 ns 10 ns 13.52 ns 63 % 53 %

ArFilter xc4vfx20 5.71 ns 10 ns 13.15 ns 45 % 44 %

Bandpass xc4vfx20 6.18 ns 10 ns 11.13 ns 53 % 44 %

BpFilter xc4vfx20 5.63 ns 10 ns 12.98 ns 58 % 50 %

DCT xc4vfx20 5.94 ns 10 ns 11.20 ns 55 % 46 %

Table 7. Results in Xilinx using bit slice approach
Applic. Virtex 4 Delay Schedule Time Step % Utilization

Actual Xilinx LUTs % Slice

Elliptic xc4vsx55 6.17 ns 10 ns 15.19 ns 45 % 28 %

ArFilter xc4vsx55 5.76 ns 10 ns 13.53 ns 36 % 24 %

Bandpass xc4vsx55 5.96 ns 10 ns 14.52 ns 39 % 24 %

BpFilter xc4vsx55 6.32 ns 10 ns 13.93 ns 42 % 26 %

DCT xc4vsx55 6.04 ns 10 ns 13.52 ns 39 % 24 %

6. REFERENCES

[1] C. Papachristou. M. Nourani, “Stability-based algorithms for
scheduling and allocation in high level synthesis of digital sys-
tems,” IEEE Transactions on VLSI, Jan. 2001.

[2] Y. Lin, “Recent developments in high level synthesis,” ACM
Trans. on Design Automation, Jan. 1997.

