
An Elliptic Curve Cryptosystem Design Based on FPGA Pipeline Folding

Osama Al-Khaleel, Chris Papachristou, Francis Wolff
Case Western Reserve University

Cleveland, Ohio 44106, USA

Kiamal Pekmestzi
National Technical University

157 80 Athens - Greece

Abstract

In this paper we present an efficient design technique
for implementing the Elliptic Curve Cryptographic (ECC)
Scheme in FPGAs. Our technique is based on a novel and ef-
ficient implementation of modular multiplication which is the
core operation of ECC. To implement large bit-length multi-
plications we used a novel partitioning and pipeline folding
scheme to fit at least 256-bit modular multiplications on a sin-
gle Virtex-4 FPGA. Comparisons to several other schemes are
presented.

1 Introduction and Motivation

Elliptic curve cryptography (ECC) is very attractive alter-
native to other cryptography systems, such as RSA, since it
offers smaller and incremental key sizes for the same security
level. For example, 160-bit and 192-bit ECC keys are consid-
ered equivalent to 1024-bit and 2048-bit RSA keys [10]. ECC
systems achieve this higher level of security because of thena-
ture of the elliptic curve discrete logarithm problem (ECDLP),
which is known to be extremely hard to be solved [4, 7]. This
equivalent security with smaller key sizes results in communi-
cation bandwidth savings and processing overhead.

The most time consuming operation in the ECC is the Point
Scalar Multiplication,P = kQ over a finite field wherek is
a scalar integer andP & Q are elliptic points. Unfortunately,
this multiply can only be done by sequentially adding the point
Q in a loopk times:P = kQ = Q1 + Q2 + · · ·+ Qk. By ex-
ploiting a classical shift-add multiply approach then thismul-
tiplication can be done by repeated point addition and point
doubling, both of which need finite field arithmetic operations
[11] and [2]. Fig. 1 shows the hierarchical relationship of the
elliptic curve scalar multiplication and their related algorithms
are given in later sections of this paper.

The most expensive finite field operation that is needed by
point addition and point doubling is the finite field inversion.
However, inversion can be transformed by using projective
coordinates into less expensive finite field operations, such
as finite field addition and multiplication. Of these transfor-
mations, the finite field multiplication is the most expensive.
To reduce complexity, the finite field multiplication is basi-
cally done as a modular multiplication, which involves normal
multiplication. Since the cryptosystems use large bit-length
operands, for example the keys, a modular multiplier that can
multiply two large numbers is needed. This urges the need for
designing a large bit-length normal multiplier to be used inthe
elliptic system.

In this work we present an elliptic curve cryptosystem de-
sign technique using FPGAs. We begin with the algorithmic

P k * Q

ECC Architecture

Projective Coordinates

Doubling:
Addition:

Elliptic Point Operations

P
P

P Q+
P P+

Alg. 3

Alg. 2

Alg. 1

Modular Multiplier
FPGA Partitioning & Folding
Radix−4 Multiplier Scheme

Datapath Scheduling

Point Scalar Multiplication

Figure 1. Elliptic curve scalar multiplication hierarchy

behavior of the point operations Figure 1. Then, we sched-
ule and map these algorithms into a datapath architecture.
Scheduling exploits potential parallelism in point operations
to improve performance. For example, using two multipli-
ers in parallel improves the efficiency almost twice than using
one. Note the modular multiplication dominates the design
of elliptic curve cryptosystem in a reconfigurable FPGA. A
key contribution is the tradeoff between performance and area
of FPGA by using a partitioning and folding pipeline tech-
nique on the modular multiplier. This allows the ECC to reside
within a single FPGA avoiding multiple FPGA design which
reduces performance due to interchip communication of the
external pins.

Furthermore, we employ a novel radix-4 array multiplica-
tion scheme which is the basis for implementing the well-
known Montgomery modular multiplier. A key point is that
we do not use the builtin multipliers of the Xilinx Virtex-4
FPGA as is commonly done in other works. This turns out to
be an advantage when using the folded pipeline technique. Re-
sults were compared favorably with respect to the same Xilinx
Virtex-II FPGA and a 32-node Beowulf cluster.

2 Elliptic curve cryptosystem (ECC)

In this section, we will first briefly introduce the classical
Diffie-Hellman public key process followed the elliptic curve
background and point operations.

The encryption and decryption setup process in elliptic
curve cryptosystems is shown in Figure 2. We will assume
Alice is going to send Bob an encrypted plain-text message,
M , using an agreed upon elliptic curveE defined over a finite
field GF (q) and a pointQ ∈ E(GF (q)).

Alice initially generates a random scalar numberka and

computes a public keyKa = kaQ using the point scalar mul-
tiplication. She keeps her private keyka secret and sharesKa

with Bob as a public key. Elsewhere, Bob generates also a
random scalar numberkb and computesKb = kbQ. He keeps
his private keykb secret and sharesKa with Alice as a public
key.

To encrypt the messageM , which is represented by a point
on the elliptic curve, and send it to Bob, Alice computes the
encrypted message (ciphertext)C=(Alice’s public keyKa, en-
crypted messageE) where the message point added to the
point multiplication of Alice’s private key by Bobs public key:
E = M + kaKb. Now, Alice sends to Bob the ciphertext
C = (Ka, E). After receiving the encrypted message, the
ciphertext, Bob can obtain the original messageM by com-
puting the following: E − kbKa ⇒ M + kaKb − kbKa ⇒
M + kakbQ− kbkaQ⇒M .

ka

ka Q*

Kb

Kb

(Ka)E, kb Ka* ME − M
Plain−text

Bob’s Private Key

Bob’s Decryption

M+ E*

Ka

(Ka)E,

Bob’s Public Key

Cypher−text

Alice’s Private Key

Alice Encryption

M

Figure 2. ECC key process

2.1 Background of elliptic curve systems

We now briefly present a mathematical background of
cryptosystems based on the elliptic curve theory. For more
details, the reader can refer to [4]. The following cubic curve
in two variablesx andy with odd primep > 3 constitutes an
Elliptic curve overGF (p).

y2 = x3 + ax + b (1)

where,a, b ∈ GF (p) satisfy4a3 + 27b2 6= 0 mod p. The
set of solutions, or pointsP = (x, y), ∀x, y ∈ GF (p), to
equation 1 along with an additional pointϕ called the point at
infinity, forms the elliptic curveE(GF (p)) overGF (p). The
elliptic curveE(GF (p)) with the addition operation(+) form
an abelian group. The identity of the addition operation is the
point at infinityϕ and the inverse of any point is the negative
of that point, which is taking the negative of they-coordinate.
For example, the inverse of the pointP (x, y) is (−P (x, y)
which isP (x,−y).
The addition of two points inE(GF (p)) is called point

addition and is done algebraically as follows:
Assume two pointsP = (x1, y1) ∈ E(GF (p)) and Q =
(x2, y2) ∈ E(GF (p)), andP 6= ∓Q. Then,R = P + Q ∈
E(GF (p)), whereR = (x3, y3) such thatx3 andy3 are:
x3 = (y2−y1

x2−x1

)2 − x1 − x2 , y3 = y2−y1

x2−x1

(x1 − x3)− y1

The addition of a point to its self is calledpoint doubling

and is done algebraically as follows:
Assume a pointP = (x1, y1) ∈ E(GF (p)) with y1 6= 0.
Then,R = P + P = 2P ∈ E(GF (p)), whereR = (x3, y3)

such that:x3 andy3 are given by:
x3 = (3x1

2
+a

2y1

)2 − 2x1 , y3 = 3x1
2
+a

2y1

(x1 − x3)− y1

In order to avoid the inversion operation inGF (q), which
is modular inversion and usually expensive, different co-
ordinates systems are used to replace the inversion with other
faster finite field operations. The conversion between the
affineco-ordinates and theprojectiveco-ordinates is defined
as follows [3]:
1) Fromaffineto projective: (x→ X, y → Y, 1→ Z)
2) Fromprojectiveto affine: (x = X

Z2 , y = Y
Z3)

2.2 Point operations using projective coordinates

• Point Addition. If P0 = (X0, Y0, Z0) and P1 =
(X1, Y1, Z1) are two different points represented using the
projective co-ordinates, then the addition of the two points is
a new point,P2 = P0 + P1, with new projective coordinates
X2, Y2, Z2. The projective coordinates of the new point can be
calculated in Algorithm 1. We observe that point addition us-
ing projective coordinates inGF (p) requires16 (modular (fi-
nite field) multiplications and7 modular additions. However,
the execution of the algorithm can be parallelized by using two
modular multipliers and two add/sub units. This will speed up
the point addition by almost 50%. The data flow graph (DFG),
assuming two modular multipliers and two modular add/sub
units, of the point addition using the projective coordinates in
GF (p) is shown in Figure 3.

Algorithm 1: Point addition using projective coordinates
Input : P0, P1

Output: P2 = P0 + P1

U0 ← X0Z
2
1 ;

S0 ← Y0Z
3
1 ;

U1 ← X1Z
2
0 ;

S1 ← Y1Z
3
0 ;

W ← U0 − U1;
R← S0 − S1;
T ← U0 + U1;
M ← S0 + S1;
Z2 ← Z0Z1W ;
X2 ← R2 − TW 2;
V ← TW 2 − 2X2;
2Y2 ← V R−MW 3;
return X2, Y2, Z2

• Point doubling. If P1 = (X1, Y1, Z1) is a point repre-
sented using the projective co-ordinates, then the doubling of
the point is a new point,P2 = P1 + P1, with new projec-
tive coordinatesX2, Y2, Z2. The projective coordinates of the
new point can be calculated as in Algorithm 2. From Algo-
rithm 2, point addition using projective coordinates inGF (p)
requires10 modular (finite field) multiplications and4 modu-
lar additions. However, the execution of the algorithm can be
parallelize by using two modular multipliers and two add/sub
units. This will speed up the point doubling by almost 50%.
The data flow graph (DFG), assuming two modular multipli-

* *

*

*

*
U0 1U

*

**

*

**

_+/

+/+/

_+/

_+/ _+/

**

_+/

Z1

Z0

Z22Y2 X2

2

W 3

2X2
TW 2

ZW Z1

R2

MW 3

*

0

T

M R

VR

V

W S0S

Z1 Z0

Y1Y0

X0 X1

* *

1

Figure 3. Scheduled Data flow graph of point addition using two

multiplier and two add/sub units in GF (p)

Algorithm 2: Point doubling with projective coordinates
Input : P1, a

Output: P2 = P1 + P1

M ← 3X2
1 + aZ4

1 ;
Z2 ← 2Y1Z1;
S ← 4X1Y

2
1 ;

X2 ←M2 − 2S;
T ← 8Y 4

1 ;
Y2 ←M(S −X2)− T ;
return X2, Y2, Z2

+/+/

*

*

3X1 X1

*
aZ2

1

Y1

*
_+/

18Y2

Z1

2Y1

* * 4X1

*

_+/

2

2S

Z

X

X2 Y 2

Z1 Z

2

1

T M

*

*

S

Figure 4. Scheduled Data flow graph of point doubling using two

multiplier and two add/sub units in GF (p)

Algorithm 3: Point scalar multiplication

Input : A point Q, l-bit integer
k =

∑l−1

i=0
ki2

i, ki ∈ {0, 1}
Output: P = kQ

P ← Q;
for i← (l − 1) to zero do

P ← P + P ;
if ki = 1 then

P ← P + Q;

return P ;

ers and two modular add/sub units, of the point doubling using
the projective coordinates inGF (p) is shown in Figure 4.
• Point scalar multiplication. The actual point multiplica-
tion P = kQ is done by repeated point addition and point
doubling. One efficient method to compute the point multipli-
cation is based on the binary expansion of the integerk. This
method is presented in Algorithm 3.

3 Implementations

The basis of our ECC implementation are the previous Al-
gorithms 1, 2, 3. The point scalar multiplication Algorithm
3 performs the actual ECC process (Figs 1, 2) whereas Algo-
rithms 1, 2 perform the detailed operations based on modular
addition/subtraction and modular multiplication. Note both
Algorithms 1, 2 are very computation intensive mainly be-
cause of the modular multiplication. The dataflow behavior
of these algorithms can be extracted and scheduled in a num-
ber of ways to exploit parallelism, subject to resource con-
straints. For example, two schedules for these algorithms
are shown in Figs. 3, 4 assuming a limitation of 2 modular
adders/subtracters and two modular multipliers being usedsi-
multaneously. However, maximum parallelism involving upto
four multipliers is possible. A baseline datapath architecture
that can accommodate the potential of these algorithms for
parallelism is illustrated in Fig. 5.

R
eg

is
te

rs
A

d
d

/S
u

b
−

1

A
d

d
/S

u
b

−
2

M
o

d
 M

u
lt

i−
1

M
o

d
 M

u
lt

i−
2

R
eg

is
te

rs

R
eg

is
te

rs

BUS ring

+− +−* *

Figure 5. Datapath architecture of the Elliptic cryptosystem

This datapath includes four modular operation units, a two-
port register files for each unit, all connected through a bus
ring structure. A finite state controller implements the con-
trol flow of each point operation algorithm. For faster perfor-
mance, the bus ring may target the register files individually,
incurring additional hardware cost.
We remark that the modular multiplier is by far the most dom-
inant component in Fig. 5 both in delay time and area. There-

fore, we focused our work on designing an efficient array mul-
tiplication scheme to implement the modular multiplier.
• Radix-4 multiplication scheme. We briefly introduce the
array multiplier that we used to build the Montgomery modu-
lar multiplier. For twok-bit numbersX andY , by processing
2 bits at a time, their product is
P = XY = {2k−1xk−1 + 2k−2xk−2 + Xk−3,k−4} ×

{2k−1yk−1 + 2k−2yk−2 + Yk−3,k−4}

1,0
Y

2 x

 5,4
X

6 y

 5,4
X

7 y

 3,2
X y

 3,2
X

5 y

 1,0
X

2 y

 1,0
X

3 y

x 0x 1x 2x 3x 4x 5x 6x 7

y
4y

5

y
6

y
0y

1

y
2y

3

y
7

Y
1,0

Y
3,2

Y
5,4

X1,0

X3,2

X5,4

5,4
Y

7 x 5,4
Y

6 x

3,2
Y

4 x3,2
Y

5 x
1,0

Y
3 x

4

Figure 6. Schematic illustration of the multiplication algorithm

By expanding the above equation we can obtain the mathemat-
ical formulas of our array multiplication scheme. This scheme
has significant advantages in terms of performance over other
array multipliers. The array multiplier is schematically illus-
trated in Figure 6. The solid lines connect the partial product
bits to distinguish the partial product bits group. If we fold the
array in Figure 6 along the diagonal, the array multiplication
algorithm can be derived.
The detailed derivation of this scheme, including the multi-
plier cells, is in our earlier work [1]. The basic cells of the
array multiplier are shown in Figure 7 and an 8-bit example is
built using these cells in Figure 8. We used carry select adders
in the bottom stage of the multiplier to add the final partial
products.

We used the array multiplier to build a modular multiplier
based on the well-known montgomery modular multiplication
algorithm [5]. The modular multiplier is embedded within the
datapath structure of Fig. 5.

• Partitioning and folded pipeline. Partitioning is needed
whenever the size of the circuit of the multiplier is large tofit
in the FPGA device. The partitioning process is done in a way
to have a main partition and other secondary partitions, Fig. 9.

The main partition is reused to implement any secondary
partition by reconfiguring the main partition through control
signals. The number of partitions depends on the size of the
FPGA device being used and the size of the circuit. The size
of the main partition should fit within the FPGA resources.
The number of partitions are adjusted until the circuit fits in
the FPGA device. Reusing the main partition can be done by
buffering and feeding back the intermediate outputs to the in-
puts of the main partition, as shown in Figure 9. Multiplexing
circuit should be used to choose between the startup inputs
and the intermediate outputs. Also, multiplexing is used, dur-

sin1

sout0sout1
cout1

cout0
xi

yi
xi+1

yi+1

xj+1yj+1sj+1

xj yj

sj+1

xj+1

sj
yj

xj

xi

yi
xi+1

yi+1

cin0
cin1

yj+1

sj

0

0

4x1
MUX

MUX
4x1

Symbol

Cell1

yi+1
xi+1
yi

xi

cout0cout1

sin1 sin0

yi+1xi+1

sout2

yi

xi

sout1

sout0

cin0
cin1

yi+1xi+1yixi

i+1c

ic

i+1y

i+1x

jx = ix
iyjy =

si+1j+1s =

xi+1j+1
x =

isjs =

i+1yj+1y =

CLA

Cell2

Symbol

in0sin1s

out1c out0c
ix
iy
i+1x

i+1y

out0sout1sout2s

in1c in0c

ixiy
i+1xi+1y

j+1s j+1yj+1x
ic

MUX

4x1

Symbol

Cell3

0

in0s s

cout0

in1

out1s s sout0out2

in0c c

xi+1

in1

i+1

y

y

xi
i

Cell4

sin0

Symbol

Figure 7. The four basic cells of the array multiplier

5P6

P7P8P9P10

P11P12P13P14

P2 P1 P0

P3

15P

P4P

Figure 8. 8-bit array multiplier

Main Partition

Control
Unit

Input XInput Y

Product P

zeros

zeros

buffer

Group output
inc

CSAs

Figure 9. The overall folded pipeline circuit

(a) Group A (b) Group B

Figure 10. The grouping

ing the reuse of the main partition to implement a secondary
partition, to isolate any unused component. The multiplexing
circuits are controlled by configuration signals that are gener-
ated by a control unit. The intermediate feedback outputs are
registered by clocked registers.

In this work, the targeted FPGA was Virtex-4 FPGA de-
vice. We could map the multiplier for up to 128-bit without
any need to partition the circuit. However, we had to partition
the circuit for higher bit-length. To do this, we first group the
basic four cells into two different groups (group A and group
B) as shown in Figure 10(a) and 10(b).

We begin with a 32-bit unpartitioned example shown in
Figure 11 where the groups, A and B, are represented by sym-
bols. Group A is represented by an empty circle and group B is
represented by a full circle. The CSAs and the connections be-
tween the groups are not shown for clarity. To demonstrate the
partitioning process in this example, the multiplier was parti-
tioned into four partitions. It turned out that the multiplier can
easily be partitioned into different partitions, where thesec-
ondary partitions are subsets of the main partition. By having
the secondary (i.e. second, third and fourth in Figure 12) parti-
tions being subsets of the main partition, the multiplier has the
advantage that the main partition can be reused to implement
any of the secondary partitions. The control unit sends config-
uration signals to control the multiplexing circuits. The four
partitions, for this 32-bit example, are shown in Figure 12.

Figure 11. 32-bit example using cell groups

First Partition (Main Partition)

Second Partition

Third Partition

Fourth Partition

Figure 12. The four partitions of the 32-bit example

The main partition as well as the secondary partitions are
implemented in a folded pipeline scheme within the FPGA
device. That is, each partition is instantiated by reconfiguring
the main partition by means of signals that control the multi-
plexing circuits. The pipeline folding circuit is in Fig. 9.

n
Folded
Part.

Grp.
A

Grp.
B

FPGA
LUTs

Clock
MHz

128 1 32 496 31977 16.4

192 8 6 267 15739 83.3

256 4 16 888 65163 32.0

Table 1. Folded pipeline grouping and partition results in Virtex-4

Single multiplier Two multipliers

n

Point
Addition

Point
Doubling

Point
Addition

Point
Doubling

128 3.170µs 1.954µs 1.758µs 0.977µs

192 4.720µs 2.880µs 2.610µs 1.705µs

256 6.403µs 4.002µs 3.602µs 2.401µs

Table 2. Virtex-4 time delays using our modular multiplier

4 Results

We implemented all our designs in Xilinx Virtex-II and
Virtex-4 devices. We used Synopsys VHDL/Verilog simula-
tors and the Xilinx ISE toolset running on Sun Blade 1000.

Table 1 presents our results on the folded pipeline imple-
mentation of the point multiplier design in Virtex-4 FPGA.
Column two shows the number of partitions that where folded
using the technique discussed in the previous section in or-
der to avoid a multichip FPGA implementation. Columns
three and four show the the number of groups related to the
radix-4 multiplier. Column five shows the number of FPGA
LUTs of the main partition. Column six shows the clock of
the resulting folded pipeline. No partitioning was required
for 128-bit radix-4 multiplier comfortably fitting within the
FPGA. For 192 and 256-bit, it was not possible to fit within a
single FPGA. Interestingly, the 192-bit required more folding
than the 256-bit multiplier but the faster 192-bit pipelineclock
compensated for this due to smaller number of groups than the
256-bit.

We implemented the point doubling operations in Virtex-
4 devices. The time delays are shown in Table 2. The table
compares the time delays of single versus two modular multi-
plier implementations. We note for the two modular multiplier
implementation case, we mapped the scheduling diagrams of
Figs. 3 and 4, into the datapath to parallelize the execution
which results in around 50% improvement.

Table 3 shows the point scalar multiplication time delays
built upon the elliptic point operations, Algorithm 3. The
Virtex-4 results are for both single and double modular multi-
plier implementions, Figs. 3 and 4. Note that the number of
parallel mulipliers has a major impact on performance.

Comparison between time delay of point addition and point
doubling, inGF (p), in our case with those in [5] are give in
Table 4. Point addition and point doubling are done faster by
using the proposed modular multiplier. The comparison was

Modular Multiplier in [5] Folded Modular Multiplier Speedup %

n

XC2V
FPGA

Point
Addition

Point
Doubling

XC2V
FPGA

Point
Addition

Point
Doubling

Point
Addition

Point
Doubling

128 P50-7-ff1517 5.59µs 3.49µs P50-7-ff1517 4.45µs 2.78µs 25.62% 25.44%

256 P125-7-ff1696 11.53µs 7.20µs P100-6-ff1704 10.34µs 6.45µs 11.51% 11.63%

Table 4. Comparison of Virtex-II time delays between [5] and our own modular multiplier

n 128 192 256

Single multiplier 0.463ms 1.078ms 1.998ms

Double multiplier 0.253ms 0.624ms 1.161ms

Table 3. Virtex-4 delay of scalar point multiplication

based on Virtex-II Pro FPGA.
We compared our 256-bit point addition results to a multi-

processor implementation based on a 32-node Beowulf cluster
[9]. The results shown in Table 5 also include their Virtex-
II implementation which uses 144 18-bit embedded multipli-
ers. Recall that our implementation does not use any Virtex
embedded multipliers. For a fair comparison, we also imple-
mented the 256-bit point addition in the same Virtex-II tech-
nology. From Table 5 we can see that the speedup in our case
with respect to the Beowulf implementation is 11.2 and the
speedup with respect to the FPGA-embedded multiplier of [9]
is 1.4. Note also that they would require a two-chip Virtex-II
implementation, for point addition and point doubling, respec-
tively, whereas our pipeline folding results in one FPGA chip
design.

32-node Beowulf
Cluster [9]

Embedded
Multiplier [9]

Folded Pipeline
in our case

196.72µs 24.56µs 17.512µs

Table 5. Comparison of ECC adder implementation between a

32-node Beowulf cluster & Virtex-II FPGAs

Other FPGA designs of the elliptic cryptosystem archi-
tectures are in [6, 8]. Comparison with [6] is difficult be-
cause they use the embedded multipliers in a Spartan FPGA,
whereas we use the older Virtex-II and do not use any embed-
ded multipliers. However, in terms of performance, we have
a speedup of around 27.9 for the 160-bit point scalar multipli-
cation. In terms of resources, we use 23% less slices without
embedded multipliers. Reference [8] also does not use embed-
ded multipliers in Virtex-II using instead shift-and-add multi-
plication. We have a speedup of around 5.3 in comparison to
their 192-bit implementation of point scalar multiplication in
Virtex-II, however, no complete resource details are included.

We remark that most of the published works use many 18-
bit embedded multipliers to construct a single large bit mul-
tiplier. The advantage of our pipeline folding scheme, how-
ever, is that we can configure several parallel multipliers in
the FPGA fabric to increase the performance.

5 Conclusions

We have presented an efficient technique for implement-
ing the Elliptic Curve Cryptographic Scheme in Virtex-II and
Virtex-4 FPGAs. Our technique is based on a novel and effi-
cient implementation of modular multiplication which is the
core operation of ECC. The main advantages of our tech-
nique are: a) Using a radix-4 modular multiplier wich allows
more efficient bit processing than radix-2. b) Scheduling and
mapping of the elliptic curve algorithms exploiting potential
parallelism. c) Using a partitioning and folded pipeline tech-
nique on the modular multiplier to tradeoff performance and
area. d) Avoiding fixed-width embedded multipliers to al-
low bit-length flexibility by configuring our multipliers within
the FPGA fabric. These advantages when compared to other
works resulted in better performance.

References

[1] A large scale multiplier ...Omitted for Blind Review, 2006.
[2] S. Devarkal and D. A. Buell. Elliptic curve arithmetic.Pro-

ceedings, MAPLD, 2003.
[3] IEEE. Standard for public-key cryptography. Nov 1999.
[4] N. Koblitz. Elliptic curve cryptosystems.Mathematics of com-

putation, 48(177):203–209, 1987.
[5] C. McIvor, M. McLoone, and J. V. McCanny. FPGA mont-

gomery modular multiplication architectures suitable forECCs
overGF (p). ISCAS-06, 3, May 2004.

[6] N. Mentens, K. Sakiyama, L. Batina, I. Verbauwhede, and
B. Preneel. Fpga-oriented secure data path design: Implemen-
tation of a public key coprocessor.IEEE Field Programmable
Logic and Applications (FPL-06), pages 133–138, 2006.

[7] V. Miller. Use of elliptic curves in cryptography.In H. C.
Williams,editor, Advances in Cryptology – CRYPTO ’85, Lec-
ture Notes in Computer Science, pages 417–426, 1986.

[8] M. Morales-Sandoval and C. Feregrino-Uribe. On the hard-
ware design of an elliptic curve cryptosystem. In5th IEEE
Mex. Intern. Conf. in Computer Sceince (ENC’04), 2004.

[9] G. Quan, J. P. Davis, S. Devarkal, and D. A. Buell. High-level
synthesis for large bit-width multipliers on fpgas: A case study.
CODES+ISSS’05, pages 213–218, September 2005.

[10] M. Shirase and Y. Hibino. An architecture for elliptic curve
cryptograph computation.SIGARCH Computer Architecture
News, 33(1):124–133, October 2005.

[11] H. Thapliyal and M. B. Srinivas. A high speed and efficient
method of elliptic curve encryption using ancient indian vedic
mathematics.MAPLD Intern. Conf., September 2005.

