
APPLICATION
NOTE

AP-70

April 1980

Using the Intel MCSÉ-51
Boolean Processing
Capabilities

JOHN WHARTON

MICROCONTROLLER APPLICATIONS

Order Number: 203830-001

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

²Since publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1996

USING THE INTEL MCSÉ-51
BOOLEAN PROCESSING

CAPABILITIES

CONTENTS PAGE

1.0 INTRODUCTION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

2.0 BOOLEAN PROCESSOR
OPERATION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 2

Processing Elements ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

Direct Bit Addressing ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5

Instruction Set ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 8

Simple Instruction Combinations ÀÀÀÀÀÀÀÀÀÀÀ 10

3.0 BOOLEAN PROCESSOR
APPLICATIONS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 12

Design Example Ý1ÐBit Permutation ÀÀÀÀÀ 12

Design Example Ý2ÐSoftware Serial
I/O ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 17

Design Example Ý3ÐCombinational
Logic Equations ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 19

Design Example Ý4ÐAutomotive
Dashboard Functions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 23

Design Example Ý5ÐComplex Control
Functions ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 30

Additional Functions and Uses ÀÀÀÀÀÀÀÀÀÀÀÀ 39

4.0 SUMMARY ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 40

APPENDIX A ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ A-1

AP-70

1.0 INTRODUCTION

The Intel microcontroller family now has three new
members: the Intel 8031, 8051, and 8751 single-chip
microcomputers. These devices, shown in Figure 1, will
allow whole new classes of products to benefit from
recent advances in Integrated Electronics. Thanks to
Intel’s new HMOS technology, they provide larger pro-
gram and data memory spaces, more flexible I/O and
peripheral capabilities, greater speed, and lower system
cost than any previous-generation single-chip micro-
computer.

203830–1

Figure 1. 8051 Family Pinout Diagram

Table 1 summarizes the quantitative differences be-
tween the members of the MCSÉ-48 and 8051 families.
The 8751 contains 4K bytes of EPROM program mem-
ory fabricated on-chip, while the 8051 replaces the
EPROM with 4K bytes of lower-cost mask-
programmed ROM. The 8031 has no program memory
on-chip; instead, it accesses up to 64K bytes of program
memory from external memory. Otherwise, the three
new family members are identical. Throughout this
Note, the term ‘‘8051’’ will represent all members of the
8051 Family, unless specifically stated otherwise.

The CPU in each microcomputer is one of the indus-
try’s fastest and most efficient for numerical calcula-
tions on byte operands. But controllers often deal with
bits, not bytes: in the real world, switch contacts can
only be open or closed, indicators should be either lit or
dark, motors are either turned on or off, and so forth.
For such control situations the most significant aspect
of the MCSÉ-51 architecture is its complete hardware
support for one-bit, or Boolean variables (named in
honor of Mathematician George Boole) as a separate
data type.

The 8051 incorporates a number of special features
which support the direct manipulation and testing of
individual bits and allow the use of single-bit variables
in performing logical operations. Taken together, these
features are referred to as the MCS-51 Boolean Proces-
sor. While the bit-processing capabilities alone would be
adequate to solve many control applications, their true
power comes when they are used in conjunction with
the microcomputer’s byte-processing and numerical ca-
pabilities.

Many concepts embodied by the Boolean Processor will
certainly be new even to experienced microcomputer
system designers. The purpose of this Application Note
is to explain these concepts and show how they are
used.

For detailed information on these parts refer to the In-

tel Microcontroller Handbook, order number 210918.
The instruction set, assembly language, and use of the
8051 assembler (ASM51) are further described in the
MCSÉ-51 Macro Assembler User’s Guide for DOS

Systems, order number 122753.

Table 1. Features of Intel’s Single-Chip Microcomputers

EPROM ROM External Program Data Instr. Input/
Interrupt Reg.

Program Program Program Memory Memory Cycle Output
Sources Banks

Memory Memory Memory (Int/Max) (Bytes) Time Pins

8748 8048 8035 1K 4K 64 2.5 ms 27 2 2

Ð 8049 8039 2K 4K 128 1.36 ms 27 2 2

8751 8051 8031 4K 64K 128 1.0 ms 32 5 4

1

AP-70

2.0 BOOLEAN PROCESSOR
OPERATION

The Boolean Processing capabilities of the 8051 are
based on concepts which have been around for some
time. Digital computer systems of widely varying de-
signs all have four functional elements in common (Fig-
ure 2):

a central processor (CPU) with the control, timing,
and logic circuits needed to execute stored instruc-
tions:

a memory to store the sequence of instructions mak-
ing up a program or algorithm:

data memory to store variables used by the pro-
gram:
and

some means of communicating with the outside
world.

The CPU usually includes one or more accumulators or
special registers for computing or storing values during
program execution. The instruction set of such a
processor generally includes, at a minimum, operation
classes to perform arithmetic or logical functions on
program variables, move variables from one place to
another, cause program execution to jump or condi-
tionally branch based on register or variable states, and
instructions to call and return from subroutines. The
program and data memory functions sometimes share a
single memory space, but this is not always the case.
When the address spaces are separated, program and
data memory need not even have the same basic word
width.

A digital computer’s flexibility comes in part from
combining simple fast operations to produce more com-

plex (albeit slower) ones, which in turn link together
eventually solving the problem at hand. A four-bit CPU
executing multiple precision subroutines can, for exam-
ple, perform 64-bit addition and subtraction. The sub-
routines could in turn be building blocks for floating-
point multiplication and division routines. Eventually,
the four-bit CPU can simulate a far more complex ‘‘vir-
tual’’ machine.

In fact, any digital computer with the above four func-
tional elements can (given time) complete any algo-
rithm (though the proverbial room full of chimpanzees
at word processors might first re-create Shakespeare’s
classics and this Application Note)! This fact offers lit-
tle consolation to product designers who want pro-
grams to run as quickly as possible. By definition, a
real-time control algorithm must proceed quickly
enough to meet the preordained speed constraints of
other equipment.

One of the factors determining how long it will take a
microcomputer to complete a given chore is the num-
ber of instructions it must execute. What makes a given
computer architecture particularly well- or poorly-suit-
ed for a class of problems is how well its instruction set
matches the tasks to be performed. The better the
‘‘primitive’’ operations correspond to the steps taken by
the control algorithm, the lower the number of instruc-
tions needed, and the quicker the program will run. All
else being equal, a CPU supporting 64-bit arithmetic
directly could clearly perform floating-point math fast-
er than a machine bogged-down by multiple-precision
subroutines. In the same way, direct support for bit
manipulation naturally leads to more efficient pro-
grams handling the binary input and output conditions
inherent in digital control problems.

203830–2

Figure 2. Block Diagram for Abstract Digital Computer

2

AP-70

Processing Elements

The introduction stated that the 8051’s bit-handling ca-
pabilities alone would be sufficient to solve some con-
trol applications. Let’s see how the four basic elements
of a digital computerÐa CPU with associated registers,
program memory, addressable data RAM, and I/O ca-
pabilityÐrelate to Boolean variables.

CPU. The 8051 CPU incorporates special logic devoted
to executing several bit-wide operations. All told, there
are 17 such instructions, all listed in Table 2. Not
shown are 94 other (mostly byte-oriented) 8051 instruc-
tions.

Program Memory. Bit-processing instructions are
fetched from the same program memory as other arith-
metic and logical operations. In addition to the instruc-

Table 2. MCS-51 Boolean

Processing Instruction Subset

Mnemonic Description Byte Cyc

SETB C Set Carry flag 1 1
SETB bit Set direct Bit 2 1
CLR C Clear Carry flag 1 1
CLR bit Clear direct bit 2 1
CPL C Complement Carry flag 1 1
CPL bit Complement direct bit 2 1

MOV C.bit Move direct bit to Carry flag 2 1
MOV bit.C Move Carry flag to direct bit 2 2

ANL C.bit AND direct bit to Carry flag 2 2
ANL C.bit AND complement of direct 2 2

bit to Carry flag
ORL C.bit OR direct bit to Carry flag 2 2
ORL C.bit OR complement of direct 2 2

bit to Carry flag

JC rel Jump if Carry is flag is set 2 2
JNC rel Jump if No Carry flag 2 2
JB bit.rel Jump if direct Bit set 3 2
JNB bit.rel Jump if direct Bit Not set 3 2
JBC bit.rel Jump if direct Bit is set & 3 2

Clear bit

Address mode abbreviations

CÐCarry flag.
bitÐ128 software flags, any I/O pin, control or status
bit.
relÐAll conditional jumps include an 8-bit offset byte.
Range is a127 b128 bytes relative to first byte of the
following instruction.

All mnemonics copyrighted© Intel Corporation 1980.

tions of Table 2, several sophisticated program control
features like multiple addressing modes, subroutine
nesting, and a two-level interrupt structure are useful in
structuring Boolean Processor-based programs.

Boolean instructions are one, two, or three bytes long,
depending on what function they perform. Those in-
volving only the carry flag have either a single-byte
opcode or an opcode followed by a conditional-branch
destination byte (Figure 3a). The more general instruc-
tions add a ‘‘direct address’’ byte after the opcode to
specify the bit affected, yielding two or three byte en-
codings (Figure 3b). Though this format allows poten-
tially 256 directly addressable bit locations, not all of
them are implemented in the 8051 family.

opcode

SETB C

CLR C

CPL C

opcode displacement

JC rel

JNC rel

a.) Carry Control and Test Instructions

opcode bit address

SETB bit

CLR bit

CPL bit

ANL C, bit

ANL C,/ bit

ORL C, bit

ORL C,/ bit

MOV C, bit

MOV bit,C

opcode bit address displacement

JB bit, rel

JNB bit, rel

JBC bit, rel

b.) Bit Manipulation and Test Instructions

Figure 3. Bit Addressing Instruction Formats

3

AP-70

203830–3

a.) RAM Bit Addresses b.) Special Function Register Bit Addresses

Figure 4. Bit Address Maps

Data Memory. The instructions in Figure 3b can oper-
ate directly upon 144 general purpose bits forming the
Boolean processor ‘‘RAM.’’ These bits can be used as
software flags or to store program variables. Two oper-
and instructions use the CPU’s carry flag (‘‘C’’) as a
special one-bit register: in a sense, the carry is a ‘‘Boole-
an accumulator’’ for logical operations and data trans-
fers.

Input/Output. All 32 I/O pins can be addressed as indi-
vidual inputs, outputs, or both, in any combination.
Any pin can be a control strobe output, status (Test)
input, or serial I/O link implemented via software. An
additional 33 individually addressable bits reconfigure,
control, and monitor the status of the CPU and all on-
chip peripheral functions (timer counters, serial port
modes, interrupt logic, and so forth).

4

AP-70

(MSB) (LSB)

CY AC F0 RS1 RS0 OV Ð P

Symbol Position Name and Significance

CY PSW.7 Carry flag.
Set/cleared by hardware or

software during certain arithme-

tic and logical instructions.

AC PSW.6 Auxiliary Carry flag.
Set/cleared by hardware during

addition or subtraction instruc-

tions to indicate carry or borrow

out of bit 3.

F0 PSW.5 Flag 0.
Set/cleared/tested by software

as a user-defined status flag.

RS1 PSW.4 Register bank Select control

bits.

RS0 PSW.3 1 & 0. Set/cleared by software

to determine working register

bank (see Note).

OV PSW.2 Overflow flag.
Set/cleared by hardware during

arithmetic instructions to indi-

cate overflow conditions.

Ð PSW.1 (reserved)

P PSW.0 Parity flag.
Set/cleared by hardware each

instruction cycle to indicate an

odd/even number of ‘‘one’’ bits

in the accumulator, i.e., even

parity.

Note- the contents of (RS1, RS0) en-

able the working register banks

as follows:
(0,0) - Bank 0 (00H–07H)
(0,1) - Bank 1 (08H–0FH)
(1,0) - Bank 2 (10H–17H)
(1,1) - Bank 3 (18H–1FH)

Figure 5. PSWÐProgram Status Word Organization

(MSB) (LSB)

RD WR T1 T0 INT1 INT0 TXD RXD

Symbol Position Name and Significance

RD P3.7 Read data control output.
Active low pulse generated by

hardware when external data

memory is read.

WR P3.6 Write data control output.
Active low pulse generated by

hardware when external data

memory is written.

T1 P3.5 Timer/counter 1 external input

or test pin.

T0 P3.4 Timer/counter 0 external input

or test pin.

INT1 P3.3 Interrupt 1 input pin.
Low-level or falling-edge trig-

gered.

INT0 P3.2 Interrupt 0 input pin.
Low-level or falling-edge trig-

gered.

TXD P3.1 Transmit Data pin for serial port

in UART mode. Clock output in

shift register mode.

RXD P3.0 Receive Data pin for serial port

in UART mode. Data I/O pin in

shift register mode.

Figure 6. P3ÐAlternate I/O Functions of Port 3

Direct Bit Addressing

The most significant bit of the direct address byte se-
lects one of two groups of bits. Values between 0 and
127 (00H and 7FH) define bits in a block of 32 bytes of
on-chip RAM, between RAM addresses 20H and 2FH
(Figure 4a). They are numbered consecutively from the
lowest-order byte’s lowest-order bit through the high-
est-order byte’s highest-order bit.

Bit addresses between 128 and 255 (80H and 0FFH)
correspond to bits in a number of special registers,
mostly used for I/O or peripheral control. These posi-
tions are numbered with a different scheme than RAM:
the five high-order address bits match those of the reg-
ister’s own address, while the three low-order bits iden-
tify the bit position within that register (Figure 4b).

5

AP-70

Notice the column labeled ‘‘Symbol’’ in Figure 5. Bits
with special meanings in the PSW and other registers
have corresponding symbolic names. General-purpose
(as opposed to carry-specific) instructions may access
the carry like any other bit by using the mnemonic CY
in place of C, P0, P1, P2, and P3 are the 8051’s four
I/O ports: secondary functions assigned to each of the
eight pins of P3 are shown in Figure 6.

Figure 7 shows the last four bit addressable registers.
TCON (Timer Control) and SCON (Serial port Con-
trol) control and monitor the corresponding peripher-
als, while IE (Interrupt Enable) and IP (Interrupt Pri-
ority) enable and prioritize the five hardware interrupt
sources. Like the reserved hardware register addresses,

the five bits not implemented in IE and IP should not
be accessed: they can not be used as software flags.

Addressable Register Set. There are 20 special function
registers in the 8051, but the advantages of bit address-
ing only relate to the 11 described below. Five poten-
tially bit-addressable register addresses (0C0H, 0C8H,
0D8H, 0E8H, & 0F8H) are being reserved for possible
future expansion in microcomputers based on the
MCS-51 architecture. Reading or writing non-existent
registers in the 8051 series is pointless, and may cause
unpredictable results. Byte-wide logical operations can
be used to manipulate bits in all non-bit addressable
registers and RAM.

6

AP-70

(MSB) (LSB)

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Symbol Position Name and Significance

TF1 TCON.7 Timer 1 overflow Flag.
Set by hardware on timer/coun-

ter overflow. Cleared when in-

terrupt processed.

TR1 TCON.6 Timer 1 Run control bit.
Set/cleared by software to turn

timer/counter on/off.

TF0 TCON.5 Timer 0 overflow Flag.
Set by hardware on timer/coun-

ter overflow. Cleared when in-

terrupt processed.

TR0 TCON.4 Timer 0 Run control bit.
Set/cleared by software to turn

timer/counter on/off.

IE1 TCON.3 Interrupt 1 Edge flag.
Set by hardware when external

interrupt edge detected.

Cleared when interrupt process-

ed.

IT1 TCON.2 Interrupt 1 Type control bit.
Set/cleared by software to

specify falling edge/low level

triggered external interrupts.

IE0 TCON.1 Interrupt 0 Edge flag.
Set by hardware when external

interrupt edge detected.

Cleared when interrupt process-

ed.

IT0 TCON.0 Interrupt 0 Type control bit.
Set/cleared by software to

specify falling edge/low level

triggered external interrupts.

a.) TCONÐTimer/Counter Control/Status Register

(MSB) (LSB)

SM0 SM1 SM2 REN TB8 RB8 TI RI

Symbol Position Name and Significance

SM0 SCON.7 Serial port Mode control bit 0.
Set/cleared by software (see

note).

SM1 SCON.6 Serial port Mode control bit 1.
Set/cleared by software (see

note).

SM2 SCON.5 Serial port Mode control bit 2.
Set by software to disable re-

ception of frames for which bit 8

is zero.

REN SCON.4 Receiver Enable control bit.
Set/cleared by software to en-

able/disable serial data recep-

tion.

TB8 SCON.3 Transmit Bit 8.
Set/cleared by hardware to de-

termine state of ninth data bit

transmitted in 9-bit UART mode.

RB8 SCON.2 Receive Bit 8.

Set/cleared by hardware to indi-
cate state of ninth data bit re-
ceived.

TI SCON.1 Transmit Interrupt flag.

Set by hardware when byte
transmitted. Cleared by soft-
ware after servicing.

RI SCON.0 Receive Interrupt flag.

Set by hardware when byte re-
ceived. Cleared by software af-
ter servicing.

Note- the state of (SM0, SM1) selects:

(0,0)ÐShift register I/O

expansion.

(0,1)Ð8-bit UART, variable

data rate.

(1,0)Ð9-bit UART, fixed data

rate.

(1,1)Ð9-bit UART, variable

data rate.

b.) SCONÐSerial Port Control/Status Register

Figure 7. Peripheral Configuration Registers

7

AP-70

(MSB) (LSB)

EA Ð Ð ES ET1 EX1 ET1 EX0

Symbol Position Name and Significance

EA IE.7 Enable All control bit.
Cleared by software to disable

all interrupts, independent of

the state of IE.4–IE.0.

Ð IE.6 (reserved)

Ð IE.5

ES IE.4 Enable Serial port control bit.
Set/cleared by software to en-

able/disable interrupts from TI

or RI flags.

ET1 IE.3 Enable Timer 1 control bit.
Set/cleared by software to en-

able/disable interrupts from tim-

er/counter 1.

EX1 IE.2 Enable External interrupt 1 con-

trol bit. Set/cleared by software

to enable/disable interrupts

from INT1.

ET0 IE.1 Enable Timer 0 control bit.
Set/cleared by software to en-

able/disable interrupts from tim-

er/counter 0.

EX0 IE.0 Enable External interrupt 0 con-

trol bit. Set/cleared by software

to enable/disable interrupts

from INT0.

c.) IEÐInterrupt Enable Register

(MSB) (LSB)

Ð Ð Ð PS PT1 PX1 PT0 PX0

Symbol Position Name and Significance

Ð IP.7 (reserved)
Ð IP.6 (reserved)
Ð IP.5 (reserved)

PS IP.4 Serial port Priority control bit.
Set/cleared by software to

specify high/low priority inter-

rupts for Serial port.

PT1 IP.3 Timer 1 Priority control bit.
Set/cleared by software to

specify high/low priority inter-

rupts for timer/counter 1.

PX1 IP.2 External interrupt 1 Priority con-

trol bit. Set/cleared by software

to specify high/low priority inter-

rupts for INT1.

PT0 IP.1 Timer 0 Priority control bit.
Set/cleared by software to

specify high/low priority inter-

rupts for timer/counter 0.

PX0 IP.0 External interrupt 0 Priority con-

trol bit. Set/cleared by software

to specify high/low priority inter-

rupts for INT0.

d.) IPÐInterrupt Priority Control Register

Figure 7. Peripheral Configuration Registers (Continued)

The accumulator and B registers (A and B) are normal-
ly involved in byte-wide arithmetic, but their individual
bits can also be used as 16 general software flags. Add-
ed with the 128 flags in RAM, this gives 144 general
purpose variables for bit-intensive programs. The pro-
gram status word (PSW) in Figure 5 is a collection of
flags and machine status bits including the carry flag
itself. Byte operations acting on the PSW can therefore
affect the carry.

Instruction Set

Having looked at the bit variables available to the Boo-
lean Processor, we will now look at the four classes of

instructions that manipulate these bits. It may be help-
ful to refer back to Table 2 while reading this section.

State Control. Addressable bits or flags may be set,
cleared, or logically complemented in one instruction
cycle with the two-byte instructions SETB, CLR, and
CPL. (The ‘‘B’’ affixed to SETB distinguishes it from
the assembler ‘‘SET’’ directive used for symbol defini-
tion.) SETB and CLR are analogous to loading a bit
with a constant: 1 or 0. Single byte versions perform the
same three operations on the carry.

The MCS-51 assembly language specifies a bit address
in any of three ways:

by a number or expression corresponding to the di-
rect bit address (0–255):

8

AP-70

by the name or address of the register containing the
bit, the dot operator symbol (a period: ‘‘.’’), and the
bit’s position in the register (7–0):

in the case of control and status registers, by the
predefined assembler symbols listed in the first col-
umns of Figures 5–7.

Bits may also be given user-defined names with the as-
sembler ‘‘BIT’’ directive and any of the above tech-
niques. For example, bit 5 of the PSW may be cleared
by any of the four instructions.

USR FLG BIT PSW.5 ; User Symbol Definition

... ...

CLR 0D5H ; Absolute Addressing

CLR PSW.5 ; Use of Dot Operator

CLR F0 ; Pre-Defined Assembler

; Symbol

CLR USR FLG ; User-Defined Symbol

Data Transfers. The two-byte MOV instructions can
transport any addressable bit to the carry in one cycle,
or copy the carry to the bit in two cycles. A bit can be
moved between two arbitrary locations via the carry by
combining the two instructions. (If necessary, push and
pop the PSW to preserve the previous contents of the
carry.) These instructions can replace the multi-instruc-
tion sequence of Figure 8, a program structure appear-
ing in controller applications whenever flags or outputs
are conditionally switched on or off.

203830–4

Figure 8. Bit Transfer Instruction Operation

Logical Operations. Four instructions perform the logi-
cal-AND and logical-OR operations between the carry
and another bit, and leave the results in the carry. The
instruction mnemonics are ANL and ORL; the absence
or presence of a slash mark (‘‘/’’) before the source
operand indicates whether to use the positive-logic val-
ue or the logical complement of the addressed bit. (The
source operand itself is never affected.)

Bit-test Instructions. The conditional jump instructions
‘‘JC rel’’ (Jump on Carry) and ‘‘JNC rel’’ (Jump on
Not Carry) test the state of the carry flag, branching if
it is a one or zero, respectively. (The letters ‘‘rel’’ de-
note relative code addressing.) The three-byte instruc-
tions ‘‘JB bit.rel’’ and ‘‘JNB bit.rel’’ (Jump on Bit and
Jump on Not Bit) test the state of any addressable bit in
a similar manner. A fifth instruction combines the
Jump on Bit and Clear operations. ‘‘JBC bit.rel’’ condi-
tionally branches to the indicated address, then clears
the bit in the same two cycle instruction. This operation
is the same as the MCS-48 ‘‘JTF’’ instructions.

All 8051 conditional jump instructions use program
counter-relative addressing, and all execute in two cy-
cles. The last instruction byte encodes a signed dis-
placement ranging from b128 to a127. During execu-
tion, the CPU adds this value to the incremented pro-
gram counter to produce the jump destination. Put an-
other way, a conditional jump to the immediately fol-
lowing instruction would encode 00H in the offset byte.

A section of program or subroutine written using only
relative jumps to nearby addresses will have the same
machine code independent of the code’s location. An
assembled routine may be repositioned anywhere in
memory, even crossing memory page boundaries, with-
out having to modify the program or recompute desti-
nation addresses. To facilitate this flexibility, there is an
unconditional ‘‘Short Jump’’ (SJMP) which uses rela-
tive addressing as well. Since a programmer would have
quite a chore trying to compute relative offset values
from one instruction to another, ASM51 automatically
computes the displacement needed given only the desti-
nation address or label. An error message will alert the
programmer if the destination is ‘‘out of range.’’

The so-called ‘‘Bit Test’’ instructions implemented on
many other microprocessors simply perform the logi-
cal-AND operation between a byte variable and a con-
stant mask, and set or clear a zero flag depending on
the result. This is essentially equivalent to the 8051
‘‘MOV C.bit’’ instruction. A second instruction is then
needed to conditionally branch based on the state of the
zero flag. This does not constitute abstract bit-address-
ing in the MCS-51 sense. A flag exists only as a field

9

AP-70

within a register: to reference a bit the programmer
must know and specify both the encompassing register
and the bit’s position therein. This constraint severely
limits the flexibility of symbolic bit addressing and re-
duces the machine’s code-efficiency and speed.

Interaction with Other Instructions. The carry flag is
also affected by the instructions listed in Table 3. It can
be rotated through the accumulator, and altered as a
side effect of arithmetic instructions. Refer to the Us-
er’s Manual for details on how these instructions oper-
ate.

Simple Instruction Combinations

By combining general purpose bit operations with cer-
tain addressable bits, one can ‘‘custom build’’ several
hundred useful instructions. All eight bits of the PSW
can be tested directly with conditional jump instruc-
tions to monitor (among other things) parity and over-
flow status. Programmers can take advantage of 128
software flags to keep track of operating modes, re-
source usage, and so forth.

The Boolean instructions are also the most efficient
way to control or reconfigure peripheral and I/O regis-
ters. All 32 I/O lines become ‘‘test pins,’’ for example,
tested by conditional jump instructions. Any output pin
can be toggled (complemented) in a single instruction
cycle. Setting or clearing the Timer Run flags (TR0 and
TR1) turn the timer/counters on or off; polling the
same flags elsewhere lets the program determine if a
timer is running. The respective overflow flags (TF0
and TF1) can be tested to determine when the desired
period or count has elapsed, then cleared in preparation
for the next repetition. (For the record, these bits are all
part of the TCON register, Figure 7a. Thanks to sym-
bolic bit addressing, the programmer only needs to re-
member the mnemonic associated with each function.
In other words, don’t bother memorizing control word
layouts.)

In the MCS-48 family, instructions corresponding to
some of the above functions require specific opcodes.
Ten different opcodes serve to clear complement the
software flags F0 and F1, enable/disable each inter-
rupt, and start/stop the timer. In the 8051 instruction
set, just three opcodes (SETB, CLR, CPL) with a direct
bit address appended perform the same functions. Two
test instructions (JB and JNB) can be combined with
bit addresses to test the software flags, the 8048 I/O
pins T0, T1, and INT, and the eight accumulator bits,
replacing 15 more different instructions.

Table 4a shows how 8051 programs implement soft-
ware flag and machine control functions associated
with special opcodes in the 8048. In every case the
MCS-51 solution requires the same number of machine
cycles, and executes 2.5 times faster.

Table 3. Other Instructions Affecting

the Carry Flag

Mnemonic Description Byte Cyc

ADD A,Rn Add register to 1 1

Accumulator

ADD A,direct Add direct byte to 2 1

Accumulator

ADD A,@Ri Add indirect RAM to 1 1

Accumulator

ADD A,Ýdata Add immediate data 2 1

to Accumulator

ADDC A,Rn Add register to 1 1

Accumulator with

Carry flag

ADDC A,direct Add direct byte to 2 1

Accumulator with

Carry flag

ADDC A,@Ri Add indirect RAM to 1 1

Accumulator with

Carry flag

ADDC A,Ýdata Add immediate data 2 1

to Acc with Carry flag

SUBB A,Rn Subtract register from 1 1

Accumulator with

borrow

SUBB A,direct Subtract direct byte 2 1

from Acc with borrow

SUBB A,@Ri Subtract indirect RAM 1 1

from Acc with borrow

SUBB A,Ýdata Subtract immediate 2 1

data from Acc with

borrow

MUL AB Multiply A & B 1 4

DIV AB Divide A by B 1 4

DA A Decimal Adjust 1 1

Accumulator

RLC A Rotate Accumulator 1 1

Left through the Carry

flag

RRC A Rotate Accumulator 1 1

Right through Carry

flag

CJNE A,direct.rel Compare direct byte 3 2

to Acc & Jump if Not

Equal

CJNE A,Ýdata.rel Compare immediate 3 2

to Acc & Jump if Not

Equal

CJNE Rn,Ýdata.rel Compare immed to 3 2

register & Jump if Not

Equal

CJNE @Ri,Ýdata.rel Compare immed to 3 2

indirect & Jump if Not

Equal

All mnemonics copyrighted © Intel Corporation 1980.

10

AP-70

Table 4a. Contrasting 8048 and 8051 Bit Control and Testing Instructions

8048
Bytes Cycles mSec

8x51
Bytes Cycles & mSec

Instruction Instruction

Flag Control
CLR C 1 1 2.5 CLR C 1 1
CPL F0 1 1 2.5 CPL F0 2 1

Flag Testing
JNC offset 2 2 5.0 JNC rel 2 2
JF0 offset 2 2 5.0 JB F0.rel 3 2
JB7 offset 2 2 5.0 JB ACC.7.rel 3 2

Peripheral Polling
JT0 offset 2 2 5.0 JB T0.rel 3 2
JN1 offset 2 2 5.0 JNB INT0.rel 3 2
JTF offset 2 2 5.0 JBC TF0.rel 3 2

Machine and Peripheral Control
STRT T 1 1 2.5 SETB TR0 2 1
EN 1 1 1 2.5 SETB EX0 2 1
DIS TCNT1 1 1 2.5 CLR ET0 2 1

Table 4b. Replacing 8048 Instruction Sequences with Single 8x51 Instructions

8048
Bytes Cycles mSec

8051
Bytes Cycles & mSec

Instruction Instruction

Flag Control
Set carry

CLR C
CPL C e 2 2 5.0 SETB C 1 1

Set Software Flag
CLR F0
CPL F0 e 2 2 5.0 SETB F0 2 1

Turn Off Output Pin
ANL P1.Ý0FBH e 2 2 5.0 CLR P1.2 2 1

Complement Output Pin
IN A.P1
XRL A.Ý04H
OUTL P1.A e 4 6 15.0 CPL P1.2 2 1

Clear Flag in RAM
MOV R0.ÝFLGADR
MOV A.@R0
ANL A.ÝFLGMASK
MOV @R0.A e 6 6 15.0 CLR USERÐFLG 2 1

11

AP-70

Table 4b. Replacing 8048 Instruction Sequences with Single 8x51 Instructions (Continued)

8048
Bytes Cycles mSec

8x51
Bytes Cycles & mSec

Instruction Instruction

Flag Testing:
Jump if Software Flag is 0

JF0 $a4
JMP offset e 4 4 10.0 JNB F0.rel 3 2

Jump if Accumulator bit is 0
CPL A
JB7 offset
CPL A e 4 4 10.0 JNB ACC.7.rel 3 2

Peripheral Polling
Test if Input Pin is Grounded

IN A.P1
CPL A
JB3 offset e 4 5 12.5 JNB P1.3.rel 3 2

Test if Interrupt Pin is High
JN1 $a4
JMP offset e 4 4 10.0 JB INT0.rel 3 2

3.0 BOOLEAN PROCESSOR
APPLICATIONS

So what? Then what does all this buy you?

Qualitatively, nothing. All the same capabilities could
be (and often have been) implemented on other ma-
chines using awkward sequences of other basic opera-
tions. As mentioned earlier, any CPU can solve any
problem given enough time.

Quantitatively, the differences between a solution al-
lowed by the 8051 and those required by previous ar-
chitectures are numerous. What the 8051 Family buys
you is a faster, cleaner, lower-cost solution to micro-
controller applications.

The opcode space freed by condensing many specific
8048 instructions into a few general operations has been
used to add new functionality to the MCS-51 architec-
tureÐboth for byte and bit operations. 144 software
flags replace the 8048’s two. These flags (and the carry)
may be directly set, not just cleared and complemented,
and all can be tested for either state, not just one. Oper-
ating mode bits previously inaccessible may be read,
tested, or saved. Situations where the 8051 instruction
set provides new capabilities are contrasted with 8048
instruction sequences in Table 4b. Here the 8051 speed
advantage ranges from 5x to 15x!

Combining Boolean and byte-wide instructions can
produce great synergy. An MCS-51 based application
will prove to be:

simpler to write since the architecture correlates
more closely with the problems being solved:

easier to debug because more individual instructions
have no unexpected or undesirable side-effects:

more byte efficient due to direct bit addressing and
program counter relative branching:

faster running because fewer bytes of instruction
need to be fetched and fewer conditional jumps are
processed:

lower cost because of the high level of system-inte-
gration within one component.

These rather unabashed claims of excellence shall not
go unsubstantiated. The rest of this chapter examines
less trivial tasks simplified by the Boolean processor.
The first three compare the 8051 with other micro-
processors; the last two go into 8051-based system de-
signs in much greater depth.

Design Example Ý1ÐBit Permutation

First off, we’ll use the bit-transfer instructions to per-
mute a lengthy pattern of bits.

12

AP-70

A steadily increasing number of data communication
products use encoding methods to protect the security
of sensitive information. By law, interstate financial
transactions involving the Federal banking system must
be transmitted using the Federal Information Pro-
cessing Data Encryption Standard (DES).

Basically, the DES combines eight bytes of ‘‘plaintext’’
data (in binary, ASCII, or any other format) with a 56-
bit ‘‘key’’, producing a 64-bit encrypted value for trans-
mission. At the receiving end the same algorithm is
applied to the incoming data using the same key, repro-
ducing the original eight byte message. The algorithm
used for these permutations is fixed; different user-de-
fined keys ensure data privacy.

It is not the purpose of this note to describe the DES in
any detail. Suffice it to say that encryption/decryption
is a long, iterative process consisting of rotations, exclu-
sive -OR operations, function table look-ups, and an
extensive (and quite bizarre) sequence of bit permuta-
tion, packing, and unpacking steps. (For further details
refer to the June 21, 1979 issue of Electronics maga-
zine.) The bit manipulation steps are included, it is ru-
mored, to impede a general purpose digital supercom-
puter trying to ‘‘break’’ the code. Any algorithm imple-
menting the DES with previous generation micro-
processors would spend virtually all of its time diddling
bits.

The bit manipulation performed is typified by the Key
Schedule Calculation represented in Figure 9. This step
is repeated 16 times for each key used in the course of a
transmission. In essence, a seven-byte, 56-bit ‘‘Shifted
Key Buffer’’ is transformed into an eight-byte, ‘‘Permu-
tation Buffer’’ without altering the shifted Key. The
arrows in Figure 9 indicate a few of the translation
steps. Only six bits of each byte of the Permutation
Buffer are used; the two high-order bits of each byte are
cleared. This means only 48 of the 56 Shifted Key Buff-
er bits are used in any one iteration.

Different microprocessor architectures would best im-
plement this type of permutation in different ways.
Most approaches would share the steps of Figure 10a:

Initialize the Permutation Buffer to default state
(ones or zeroes):

Isolate the state of a bit of a byte from the Key
Buffer. Depending on the CPU, this might be ac-
complished by rotating a word of the Key Buffer
through a carry flag or testing a bit in memory or an
accumulator against a mask byte:

Perform a conditional jump based on the carry or
zero flag if the Permutation Buffer default state is
correct:

Otherwise reverse the corresponding bit in the per-
mutation buffer with logical operations and mask
bytes.

Each step above may require several instructions. The
last three steps must be repeated for all 48 bits. Most
microprocessors would spend 300 to 3,000 microsec-
onds on each of the 16 iterations.

Notice, though, that this flow chart looks a lot like
Figure 8. The Boolean Processor can permute bits by
simply moving them from the source to the carry to the
destinationÐa total of two instructions taking four
bytes and three microseconds per bit. Assume the Shift-
ed Key Buffer and Permutation Buffer both reside in
bit-addressable RAM, with the bits of the former as-
signed symbolic names SKBÐ1, SKBÐ2, . . . SKBÐ
56, and that the bytes of the latter are named PBÐ1,
. . . PBÐ8. Then working from Figure 9, the software
for the permutation algorithm would be that of Exam-
ple 1a. The total routine length would be 192 bytes,
requiring 144 microseconds.

Permuted and Shifted 56-Bit Key Buffer

203830–5
48-Bit Key KI

Figure 9. DES Key Schedule Transformation

13

AP-70

203830–6

Figure 10a. Flowchart for Key Permutation Attempted with a Byte Processor

14

AP-70

203830–7

Figure 10b. DES Key Permutation with Boolean Processor

15

AP-70

The algorithm of Figure 10b is just slightly more effi-
cient in this time-critical application and illustrates the
synergy of an integrated byte and bit processor. The
bits needed for each byte of the Permutation Buffer are
assimilated by loading each bit into the carry (1 ms.)
and shifting it into the accumulator (1 ms.). Each byte
is stored in RAM when completed. Forty-eight bits
thus need a total of 112 instructions, some of which are
listed in Example 1b.

Worst-case execution time would be 112 microseconds,
since each instruction takes a single cycle. Routine
length would also decrease, to 168 bytes. (Actually, in
the context of the complete encryption algorithm, each
permuted byte would be processed as soon as it is as-
similatedÐsaving memory and cutting execution time
by another 8 ms.)

To date, most banking terminals and other systems us-
ing the DES have needed special boards or peripheral
controller chips just for the encryption/decryption pro-
cess, and still more hardware to form a serial bit stream
for transmission (Figure 11a). An 8051 solution could
pack most of the entire system onto the one chip (Fig-
ure 11b). The whole DES algorithm would require less
than one-fourth of the on-chip program memory, with
the remaining bytes free for operating the banking ter-
minal (or whatever) itself.

Moreover, since transmission and reception of data is
performed through the on-board UART, the unen-
crypted data (plaintext) never even exists outside the
microcomputer! Naturally, this would afford a high de-
gree of security from data interception.

Example 1. DES Key Permutation Software.

a.) ‘‘Brute Force’’ technique

MOV C,SKB 1
MOV PB 1.1,C
MOV C,SKB 2
MOV PB 4.0,C
MOV C,SKB 3
MOV PB 2.5,C
MOV C,SKB 4
MOV PB 1.0,C
...
...
MOV C,SKB 55
MOV PB 5.0,C
MOV C,SKB 56
MOV PB 7.2,C

b.) Using Accumulator to Collect Bits

CLR A
MOV C,SKB 14
RLC A
MOV C,SKB 17
RLC A
MOV C,SKB 11
RLC A
MOV C,SKB 24
RLC A
MOV C,SKB 1
RLC A
MOV C,SKB 5
RLC A
MOV PB 1,A
...
...
MOV C,SKB 29
RLC A
MOV C,SKB 32
RLC A
MOV PB 8,A

16

AP-70

203830–8

a.) Using Multi-Chip Processor Technology

203830–9

b.) Using One Single-Chip Microcomputer

Figure 11. Secure Banking Terminal Block Diagram

Design Example Ý2ÐSoftware
Serial I/O

An exercise often imposed on beginning microcomput-
er students is to write a program simulating a UART.
Though doing this with the 8051 Family may appear to
be a moot point (given that the hardware for a full
UART is on-chip), it is still instructive to see how it
would be done, and maintains a product line tradition.

As it turns out, the 8051 microcomputers can receive or
transmit serial data via software very efficiently using
the Boolean instruction set. Since any I/O pin may be a
serial input or output, several serial links could be
maintained at once.

Figures 12a and 12b show algorithms for receiving or
transmitting a byte of data. (Another section of pro-
gram would invoke this algorithm eight times, synchro-
nizing it with a start bit, clock signal, software delay, or
timer interrupt.) Data is received by testing an input
pin, setting the carry to the same state, shifting the
carry into a data buffer, and saving the partial frame in
internal RAM. Data is transmitted by shifting an out-
put buffer through the carry, and generating each bit
on an output pin.

A side-by-side comparison of the software for this com-
mon ‘‘bit-banging’’ application with three different mi-
croprocessor architectures is shown in Table 5a and 5b.
The 8051 solution is more efficient than the others on
every count!

17

AP-70

203830–10

a.) Reception

203830–11

b.) Transmission

Figure 12. Serial I/O Algorithms

18

AP-70

Table 5. Serial I/O Programs for Various Microprocessors

203830–30

Design Example Ý3ÐCombinatorial
Logic Equations

Next we’ll look at some simple uses for bit-test instruc-
tions and logical operations. (This example is also pre-
sented in Application Note AP-69.)

Virtually all hardware designers have solved complex
functions using combinatorial logic. While the hard-
ware involved may vary from relay logic, vacuum
tubes, or TTL or to more esoteric technologies like flu-
idics, in each case the goal is the same: to solve a prob-
lem represented by a logical function of several Boolean
variables.

Figure 13 shows TTL and relay logic diagrams for a
function of the six variables U through Z. Each is a
solution of the equation.

Q e (U # (V a W)) a (X # Y) a Z

Equations of this sort might be reduced using Kar-
naugh Maps or algebraic techniques, but that is not the
purpose of this example. As the logic complexity in-
creases, so does the difficulty of the reduction process.
Even a minor change to the function equations as the
design evolves would require tedious re-reduction from
scratch.

19

AP-70

203830–12
Q e (U # (V a W)) a (X # Y) a Z

a.) Using TTL

203830–13

b.) Using Relay Logic

Figure 13. Hardware Implementations of Boolean Functions

For the sake of comparison we will implement this
function three ways, restricting the software to three
proper subsets of the MCS-51 instruction set. We will
also assume that U and V are input pins from different
input ports, W and X are status bits for two peripheral
controllers, and Y and Z are software flags set up earli-
er in the program. The end result must be written

to an output pin on some third port. The first two im-
plementations follow the flow-chart shown in Figure
14. Program flow would embark on a route down a
test-and-branch tree and leaves either the ‘‘True’’ or
‘‘Not True’’ exit ASAPÐas soon as the proper result
has been determined. These exits then rewrite the out-
put port with the result bit respectively one or zero.

20

AP-70

203830–14

Figure 14. Flow Chart for

Tree-Branching Algorithm

Other digital computers must solve equations of this
type with standard word-wide logical instructions and
conditional jumps. So for the first implementation, we
won’t use any generalized bit-addressing instructions.
As we shall soon see, being constrained to such an in-
struction subset produces somewhat sloppy software
solutions. MCS-51 mnemonics are used in Example 2a:
other machines might further cloud the situation by
requiring operation-specific mnemonics like INPUT,
OUTPUT, LOAD, STORE, etc., instead of the MOV
mnemonic used for all variable transfers in the 8051
instruction set.

The code which results is cumbersome and error prone.
It would be difficult to prove whether the software
worked for all input combinations in programs of this
sort. Furthermore, execution time will vary widely with
input data.

Thanks to the direct bit-test operations, a single in-
struction can replace each move mask conditional jump
sequence in Example 2a, but the algorithm would be
equally convoluted (see Example 2b). To lessen the
confusion ‘‘a bit’’ each input variable is assigned a sym-
bolic name.

A more elegant and efficient implementation (Example
2c) strings together the Boolean ANL and ORL func-
tions to generate the output function with straight-line
code. When finished, the carry flag contains the result,
which is simply copied out to the destination pin. No
flow chart is neededÐcode can be written directly from
the logic diagrams in Figure 14. The result is simplicity
itself: fast, flexible, reliable, easy to design, and easy to
debug.

An 8051 program can simulate an N-input AND or
OR gate with at most Na1 lines of source programÐ
one for each input and one line to store the results. To
simulate NAND and NOR gates, complement the car-
ry after computing the function. When some inputs to
the gate have ‘‘inversion bubbles’’, perform the ANL or
ORL operation on inverted operands. When the first
input is inverted, either load the operand into the carry
and then complement it, or use DeMorgan’s Theorem
to convert the gate to a different form.

Example 2. Software Solutions to Logic Function of
Figure 13.

a.) Using only byte-wide logical instructions

:BFUNCI SOLVE RANDOM LOGIC
; FUNCTION OF 6 VARIABLES
; BY LOADING AND MASKING
; THE APPROPRIATE BITS IN
; THE ACCUMULATOR. THEN
; EXECUTING CONDITIONAL
; JUMPS BASED ON ZERO
; CONDITION. (APPROACH USED
; BY BYTE-ORIENTED
; ARCHITECTURES.) BYTE AND
; MASK VALUES CORRESPOND TO
; RESPECTIVE BYTE ADDRESS
; AND BIT POSITIONS.
;
OUTBUF DATA 22H
;OUTPUT PIN STATE MAP
;

21

AP-70

TESTV: MOV A,P2
ANL A,#00000100B
JNZ TESTU
MOV A,TCON
ANL A,#00100000B
JZ TESTX

TESTU: MOV A,P1
ANL A,#00000010B
JNZ SETQ

TESTX: MOV A,TCON
ANL A,#00001000B
JZ TESTZ
MOV A,20H
ANL A,#00000001B
JZ SETQ

TESTZ: MOV A,21H
ANL A,#00000010B
JZ SETQ

CLRQ: MOV A,OUTBUF
ANL A,#11110111B
JMP OUTQ

SETQ: MOV A,OUTBUF
ORL A,#00001000B

OUTQ: MOV OUTBUF,A
MOV P3,A

b.) Using only bit-test instructions

:BFUNC2 SOLVE A RANDOM LOGIC
; FUNCTION OF 6 VARIABLES
; BY DIRECTLY POLLING EACH
; BIT. (APPROACH USING
; MCS-51 UNIQUE BIT-TEST
; INSTRUCTION CAPABILITY.)
; SYMBOLS USED IN LOGIC
; DIAGRAM ASSIGNED TO
; CORRESPONDING 8x51 BIT
; ADDRESSES.
;

U BIT P1.1
V BIT P2.2
W BIT TF0
X BIT IE1
Y BIT 20H.0
Z BIT 21H.1
Q BIT P3.3
;
TEST V: JB V,TEST U

JNB W,TEST X
TEST U: JB U,SET Q
TEST X: JNB X,TEST Z

JNB Y,SET Q
TEST Z: JNB Z,SET Q
CLR Q: CLR Q

JMP NXTTST
SET Q: SETB Q
NXTTST:(CONTINUATION OF

:PROGRAM)

c.) Using logical operations on Boolean variables

:FUNC3 SOLVE A RANDOM LOGIC
; FUNCTION OF 6 VARIABLES
; USING STRAIGHT LINE
; LOGICAL INSTRUCTIONS ON
; MCS-51 BOOLEAN VARIABLES.
;
MOV C,V
ORL C,W ;OUTPUT OF OR GATE
ANL C,U ;OUTPUT OF TOP AND GATE
MOV F0,C ;SAVE INTERMEDIATE STATE
MOV C,X
ANL C,Y ;OUTPUT OF BOTTOM AND GATE
ORL C,F0 ;INCLUDE VALUE SAVED ABOVE
ORL C,Z ;INCLUDE LAST INPUT

;VARIABLE
MOV Q,C ;OUTPUT COMPUTED RESULT

22

AP-70

An upper-limit can be placed on the complexity of soft-
ware to simulate a large number of gates by summing
the total number of inputs and outputs. The actual total
should be somewhat shorter, since calculations can be
‘‘chained,’’ as shown. The output of one gate is often
the first input to another, bypassing the intermediate
variable to eliminate two lines of source.

Design Example Ý4ÐAutomotive
Dashboard Functions

Now let’s apply these techniques to designing the soft-
ware for a complete controller system. This application
is patterned after a familiar real-world application
which isn’t nearly as trivial as it might first appear:
automobile turn signals.

Imagine the three position turn lever on the steering
column as a single-pole, triple-throw toggle switch. In
its central position all contacts are open. In the up or
down positions contacts close causing corresponding
lights in the rear of the car to blink. So far very simple.

Two more turn signals blink in the front of the car, and
two others in the dashboard. All six bulbs flash when
an emergency switch is closed. A thermo-mechanical
relay (accessible under the dashboard in case it wears
out) causes the blinking.

Applying the brake pedal turns the tail light filaments
on constantly . . . unless a turn is in progress, in which
case the blinking tail light is not affected. (Of course,
the front turn signals and dashboard indicators are not
affected by the brake pedal.) Table 6 summarizes these
operating modes.

Table 6. Truth Table for Turn-Signal Operation

Input Signals Output Signals

Brake Emerg.
Left Right Left Right

Left Right

Switch Switch
Turn Turn Front Front

Rear Rear
Switch Switch & Dash & Dash

0 0 0 0 Off Off Off Off

0 0 0 1 Off Blink Off Blink

0 0 1 0 Blink Off Blink Off

0 1 0 0 Blink Blink Blink Blink

0 1 0 1 Blink Blink Blink Blink

0 1 1 0 Blink Blink Blink Blink

1 0 0 0 Off Off On On

1 0 0 1 Off Blink On Blink

1 0 1 0 Blink Off Blink On

1 1 0 0 Blink Blink On On

1 1 0 1 Blink Blink On Blink

1 1 1 0 Blink Blink Blink On

23

AP-70

But we’re not done yet. Each of the exterior turn signal
(but not the dashboard) bulbs has a second, somewhat
dimmer filament for the parking lights. Figure 15
shows TTL circuitry which could control all six bulbs.
The signals labeled ‘‘High Freq.’’ and ‘‘Low Freq.’’ rep-
resent two square-wave inputs. Basically, when one of
the turn switches is closed or the emergency switch is
activated the low frequency signal (about 1 Hz) is gated
through to the appropriate dashboard indicator(s) and
turn signal(s). The rear signals are also activated when
the brake pedal is depressed provided a turn is not be-
ing made in the same direction. When the parking light
switch is closed the higher frequency oscillator is gated
to each front and rear turn signal, sustaining a low-in-
tensity background level. (This is to eliminate the need
for additional parking light filaments.)

In most cars, the switching logic to generate these func-
tions requires a number of multiple-throw contacts. As
many as 18 conductors thread the steering column of
some automobiles solely for turn-signal and emergency
blinker functions. (The author discovered this recently
to his astonishment and dismay when replacing the
whole assembly because of one burned contact.)

A multiple-conductor wiring harness runs to each cor-
ner of the car, behind the dash, up the steering column,
and down to the blinker relay below. Connectors at

each termination for each filament lead to extra cost
and labor during construction, lower reliability and
safety, and more costly repairs. And considering the
system’s present complexity, increasing its reliability or
detecting failures would be quite difficult.

There are two reasons for going into such painful detail
describing this example. First, to show that the messiest
part of many system designs is determining what the
controller should do. Writing the software to solve
these functions will be comparatively easy. Secondly, to
show the many potential failure points in the system.
Later we’ll see how the peripheral functions and intelli-
gence built into a microcomputer (with a little creativi-
ty) can greatly reduce external interconnections and
mechanical part count.

The Single-Chip Solution

The circuit shown in Figure 16 indicates five input pins
to the five input variablesÐleft-turn select, right-turn
select, brake pedal down, emergency switch on, and
parking lights on. Six output pins turn on the front,
rear, and dashboard indicators for each side. The mi-
crocomputer implements all logical functions through
software, which periodically updates the output signals
as time elapses and input conditions change.

203830–15

Figure 15. TTL Logic Implementation of Automotive Turn Signals

24

AP-70

203830–16

Figure 16. Microcomputer Turn-Signal Connections

Design Example Ý3 demonstrated that symbolic ad-
dressing with user-defined bit names makes code and
documentation easier to write and maintain. Accord-
ingly, we’ll assign these I/O pins names for use
throughout the program. (The format of this example
will differ somewhat from the others. Segments of the
overall program will be presented in sequence as each is
described.)

;
; INPUT PIN DECLARATIONS:
;(ALL INPUTS ARE POSITIVE-TRUE LOGIC)
;
BRAKE BIT P1.0 ;BRAKE PEDAL

;DEPRESSED
EMERG BIT P1.1 ;EMERGENCY BLINKER

;ACTIVATED
PARK BIT P1.2 ;PARKING LIGHTS ON
I TURN BIT P1.3 ;TURN LEVER DOWN
R TURN BIT P1.4 ;TURN LEVER UP
;
; OUTPUT PIN DECLARATIONS:
;
I FRNT BIT P1.5 ;FRONT LEFT-TURN

;INDICATOR
R FRNT BIT P1.6 ;FRONT RIGHT-TURN

;INDICATOR
I DASH BIT P1.7 ;DASHBOARD LEFT-TURN

;INDICATOR

R DASH BIT P2.0 ;DASHBOARD RIGHT-
;TURN INDICATOR

I REAR BIT P2.1 ;REAR LEFT-TURN
;INDICATOR

R REAR BIT P2.2 ;REAR RIGHT-TURN
;INDICATOR

;

Another key advantage of symbolic addressing will ap-
pear further on in the design cycle. The locations of
cable connectors, signal conditioning circuitry, voltage
regulators, heat sinks, and the like all affect P.C. board
layout. It’s quite likely that the somewhat arbitrary pin
assignment defined early in the software design cycle
will prove to be less than optimum; rearranging the I/O
pin assignment could well allow a more compact mod-
ule, or eliminate costly jumpers on a single-sided board.
(These considerations apply especially to automotive
and other cost-sensitive applications needing single-
chip controllers.) Since other architectures mask bytes
or use ‘‘clever’’ algorithms to isolate bits by rotating
them into the carry, re-routing an input signal (from bit
1 of port 1, for example, to bit 4 of port 3) could require
extensive modifications throughout the software.

The Boolean Processor’s direct bit addressing makes
such changes absolutely trivial. The number of the port
containing the pin is irrelevent, and masks and complex

25

AP-70

program structures are not needed. Only the initial
Boolean variable declarations need to be changed;
ASM51 automatically adjusts all addresses and symbol-
ic references to the reassigned variables. The user is
assured that no additional debugging or software verifi-
cation will be required.

;
;INTERRUPT RATE SUBDIVIDER
SUB DIV DATA 20H
;HIGH-FREQUENCY OSCILLATOR BIT
HI FREQ BIT SUB DIV,0
;LOW-FREQUENCY OSCILLATOR BIT
LO FREQ BIT SUB DIV,7
; ...

ORG 0000H
JMP INIT
;

ORG 100H
;PUT TIMER 0 IN MODE 1
INIT; MOV TMOD,#00000001B
;INITIALIZE TIMER REGISTERS

MOV TL0,#0
MOV TH0,#116

;SUBDIVIDE INTERRUPT RATE BY 244
MOV SUB DIV,#244

;ENABLE TIMER INTERRUPTS
SETB ET0

;GLOBALLY ENABLE ALL INTERRUPTS
SETB EA

;START TIMER
SETB TR0

;
;(CONTINUE WITH BACKGROUND PROGRAM)
;
;PUT TIMER 0 IN MODE 1
;INITIALIZE TIMER REGISTERS

;SUBDIVIDE INTERRUPT RATE BY 244
;ENABLE TIMER INTERRUPTS
;GLOBALLY ENABLE ALL INTERRUPTS
;START TIMER

Timer 0 (one of the two on-chip timer counters) re-
places the thermo-mechanical blinker relay in the dash-
board controller. During system initialization it is con-
figured as a timer in mode 1 by setting the least signifi-
cant bit of the timer mode register (TMOD). In this
configuration the low-order byte (TL0) is incremented
every machine cycle, overflowing and incrementing the
high-order byte (TH0) every 256 ms. Timer interrupt 0
is enabled so that a hardware interrupt will occur each
time TH0 overflows.

An eight-bit variable in the bit-addressable RAM array
will be needed to further subdivide the interrupts via
software. The lowest-order bit of this counter toggles
very fast to modulate the parking lights: bit 7 will be

‘‘tuned’’ to approximately 1 Hz for the turn- and emer-
gency-indicator blinking rate.

Loading TH0 with -16 will cause an interrupt after
4.096 ms. The interrupt service routine reloads the
high-order byte of timer 0 for the next interval, saves
the CPU registers likely to be affected on the stack, and
then decrements SUBÐDIV. Loading SUBÐDIV.
with 244 initially and each time it decrements to zero
will produce a 0.999 second period for the highest-or-
der bit.

ORG 000BH ;TIMER 0 SERVICE VECTOR
MOV TH0,#-16
PUSH PSW
PUSH ACC
PUSH B
DJNZ SUB DIV,T0SERV
MOV SUB DIV,#244

The code to sample inputs, perform calculations, and
update outputsÐthe real ‘‘meat’’ of the signal control-
ler algorithmÐmay be performed either as part of the
interrupt service routine or as part of a background
program loop. The only concern is that it must be exe-
cuted at least serveral dozen times per second to pre-
vent parking light flickering. We will assume the for-
mer case, and insert the code into the timer 0 service
routine.

First, notice from the logic diagram (Figure 15) that
the subterm (PARK # HÐFREQ), asserted when the
parking lights are to be on dimly, figures into four of
the six output functions. Accordingly, we will first
compute that term and save it in a temporary location
named ‘‘DIM’’. The PSW contains two general purpose
flags: F0, which corresponds to the 8048 flag of the
same name, and PSW.1. Since the PSW has been saved
and will be restored to its previous state after servicing
the interrupt, we can use either bit for temporary stor-
age.

DIM BIT PSW.1 ;DECLARE TEMP
;STORAGE FLAG

;
MOV C,PARK ;GATE PARKING

;LIGHT SWITCH
ANL HI FREQ ;WITH HIGH

;FREQUENCY
;SIGNAL

MOV DIM,C ;AND SAVE IN
;TEMP. VARIABLE

This simple three-line section of code illustrates a re-
markable point. The software indicates in very abstract
terms exactly what function is being performed, inde-

26

AP-70

pendent of the hardware configuration. The fact that
these three bits include an input pin, a bit within a
program variable, and a software flag in the PSW is
totally invisible to the programmer.

Now generate and output the dashboard left turn sig-
nal.

;
MOV C,L TURN ;SET CARRY IF

;TURN
ORL C,EMERG ;OR EMERGENCY

;SELECTED
ANL C,LO FREQ ;GATE IN 1 HZ

;SIGNAL
MOV I DASH,C ;AND OUTPUT TO

;DASHBOARD

To generate the left front turn signal we only need to
add the parking light function in F0. But notice that the
function in the carry will also be needed for the rear
signal. We can save effort later by saving its current
state in F0.

;
MOV F0,C ;SAVE FUNCTION

;SO FAR
ORL C,DIM ;ADD IN PARKING

;LIGHT FUNCTION
MOV L FRNT,C ;AND OUTPUT TO

;TURN SIGNAL

Finally, the rear left turn signal should also be on when
the brake pedal is depressed, provided a left turn is not
in progress.

MOV C,BRAKE ;GATE BRAKE
;PEDAL SWITCH

ANL C,L TURN ;WITH TURN
;LEVER

ORL C,F0 ;INCLUDE TEMP.
;VARIABLE FROM DASH

ORL C,DIM ;AND PARKING
;LIGHT FUNCTION

MOV L REAR,C ;AND OUTPUT TO
;TURN SIGNAL

Now we have to go through a similar sequence for the
right-hand equivalents to all the left-turn lights. This
also gives us a chance to see how the code segments
above look when combined.

MOV C.R TURN ;SET CARRY H-
;TURN

ORL C.EMERG ;OR EMERGENCY
;SELECTED

ANL C,LO FREQ ;IF SO. GATE IN 1
;HZ SIGNAL

MOV R DASH.C ;AND OUTPUT TO
;DASHBOARD

MOV F0.C ;SAVE FUNCTION
;SO FAR

ORL C.DIM ;ADD IN PARKING
;LIGHT FUNCTION

MOV R FRNT.C ;AND OUTPUT TO
;TURN SIGNAL

MOV C.BRAKE ;GATE BRAKE
;PEDAL SWITCH

ANL C. R TURN ;WITH TURN
;LEVER

ORL C.F0 ;INCLUDE TEMP.
;VARIABLE FROM
;DASH

ORL C.DIM ;AND PARKING
;LIGHT FUNCTION

MOV R REAR.C ;AND OUTPUT TO
;TURN SIGNAL

(The perceptive reader may notice that simply rear-
ranging the steps could eliminate one instruction from
each sequence.)

Now that all six bulbs are in the proper states, we can
return from the interrupt routine, and the program is
finished. This code essentially needs to reverse the
status saving steps at the beginning of the interrupt.

Table 7. Non-Trivial Duty Cycles

SubÐDiv Bits Duty Cycles
7 6 5 4 3 2 1 0 12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 87.5%

X X X X X 0 0 0 Off Off Off Off Off Off Off
X X X X X 0 0 1 Off Off Off Off Off Off On
X X X X X 0 1 0 Off Off Off Off Off On On
X X X X X 0 1 1 Off Off Off Off On On On
X X X X X 1 0 0 Off Off Off On On On On
X X X X X 1 0 1 Off Off On On On On On
X X X X X 1 1 0 Off On On On On On On
X X X X X 1 1 1 On On On On On On On

27

AP-70

POP B ;RESTORE CPU
;REGISTERS.

POP ACC
POP PSW
RETI

Program Refinements. The luminescence of an incan-
descent light bulb filament is generally non-linear: the
50% duty cycle of HIÐFREQ may not produce the
desired intensity. If the application requires, duty cy-
cles of 25%, 75%, etc. are easily achieved by ANDing
and ORing in additional low-order bits of SUBÐDIV.
For example, 30 H/ signals of seven different duty cy-
cles could be produced by considering bits 2–0 as
shown in Table 7. The only software change required
would be to the code which sets-up variable DIM;

MOV C,SUB DIV.1;START WITH 50
;PERCENT

ANL C,SUB DIV.0;MASK DOWN TO 25
;PERCENT

ORL C,SUB DIV.2;AND BUILD BACK TO
;62 PERCENT

MOV DIM,C ;DUTY CYCLE FOR
;PARKING LIGHTS.

Interconnections increase cost and decrease reliability.
The simple buffered pin-per-function circuit in Figure
16 is insufficient when many outputs require higher-
than-TTL drive levels. A lower-cost solution uses the
8051 serial port in the shift-register mode to augment
I/O. In mode 0, writing a byte to the serial port data
buffer (SBUF) causes the data to be output sequentially
through the ‘‘RXD’’ pin while a burst of eight clock
pulses is generated on the ‘‘TXD’’ pin. A shift register
connected to these pins (Figure 17) will load the data
byte as it is shifted out. A number of special peripheral

driver circuits combining shift-register inputs with high
drive level outputs have been introduced recently.

Cascading multiple shift registers end-to-end will ex-
pand the number of outputs even further. The data rate
in the I/O expansion mode is one megabaud, or 8 ms.
per byte. This is the mode which the serial port defaults
to following a reset, so no initialization is required.

The software for this technique uses the B register as a
‘‘map’’ corresponding to the different output functions.
The program manipulates these bits instead of the out-
put pins. After all functions have been calculated the B
register is shifted by the serial port to the shift-register
driver. (While some outputs may glitch as data is shift-
ed through them, at 1 Megabaud most people wouldn’t
notice. Some shift registers provide an ‘‘enable’’ bit to
hold the output states while new data is being shifted
in.)

This is where the earlier decision to address bits sym-
bolically throughout the program is going to pay off.
This major I/O restructuring is nearly as simple to im-
plement as rearranging the input pins. Again, only the
bit declarations need to be changed.

I FRNT BIT B.0 ;FRONT LEFT-TURN
;INDICATOR

R FRNT BIT B.1 ;FRONT RIGHT-TURN
;INDICATOR

I DASH BIT B.2 ;DASHBOARD LEFT-TURN
;INDICATOR

R DASH BIT B.3 ;DASHBOARD RIGHT-TURN
;INDICATOR

I REAR BIT B.4 ;REAR LEFT-TURN
;INDICATOR

R REAR BIT B.5 ;REAR RIGHT-TURN
;INDICATOR

203830–17

Figure 17. Output Expansion Using Serial Port

28

AP-70

The original program to compute the functions need
not change. After computing the output variables, the
control map is transmitted to the buffered shift register
through the serial port.

MOV SBUF,B ;LOAD BUFFER AND TRANSMIT

The Boolean Processor solution holds a number of ad-
vantages over older methods. Fewer switches are re-
quired. Each is simpler, requiring fewer poles and lower
current contacts. The flasher relay is eliminated entire-
ly. Only six filaments are driven, rather than 10. The
wiring harness is therefore simpler and less expensiveÐ
one conductor for each of the six lamps and each of the
five sensor switches. The fewer conductors use far few-
er connectors. The whole system is more reliable.

And since the system is much simpler it would be feasi-
ble to implement redundancy and or fault detection on
the four main turn indicators. Each could still be a

standard double filament bulb, but with the filaments
driven in parallel to tolerate single-element failures.

Even with redundancy, the lights will eventually fail.
To handle this inescapable fact current or voltage sens-
ing circuits on each main drive wire can verify that
each bulb and its high-current driver is functioning
properly. Figure 18 shows one such circuit.

Assume all of the lights are turned on except one: i.e.,
all but one of the collectors are grounded. For the bulb
which is turned off, if there is continuity from a12V
through the bulb base and filament, the control wire, all
connectors, and the P.C. board traces, and if the tran-
sistor is indeed not shorted to ground, then the collec-
tor will be pulled to a12V. This turns on the base of
Q8 through the corresponding resistor, and grounds the
input pin, verifying that the bulb circuit is operational.
The continuity of each circuit can be checked by soft-
ware in this way.

203830–18

Figure 18

29

AP-70

Now turn all the bulbs on, grounding all the collectors.
Q7 should be turned off, and the Test pin should be
high. However, a control wire shorted to a12V or an
open-circuited drive transistor would leave one of the
collectors at the higher voltage even now. This too
would turn on Q7, indicating a different type of failure.
Software could perform these checks once per second
by executing the routine every time the software count-
er SUBÐDIV is reloaded by the interrupt routine.

DJNZ SUB DIV,T0SERV
MOV SUB DIV,#244 ;RELOAD COUNTER
ORL P1,#11100000B ;SET CONTROL

;OUTPUTS HIGH
ORL P2,#00000111B
CLR I FRNT ;FLOAT DRIVE

;COLLECTOR
JB T0,FAULT ;T0 SHOULD BE

;PULLED LOW
SETB L FRNT ;PULL COLLECTOR

;BACK DOWN
CLR L DASH
JB T0,FAULT
SETB L DASH
CLR L REAR
JB T0,FAULT
SETB L REAR
CLR R FRNT
JB T0,FAULT
SETB R FRNT
CLR R DASH
JB T0,FAULT
SETB R DASH
CLR R REAR
JB T0,FAULT
SETB R REAR

;
;WITH ALL COLLECTORS GROUNDED. T0
SHOULD BE HIGH

;IF SO. CONTINUE WITH INTERRUPT
ROUTINE.
JB TO,TOSERV

FAULT: ;ELECTRICAL
;FAILURE
;PROCESSING
;ROUTINE
;(LEFT TO
;READER’S
;IMAGINATION)

T0SERV: ;CONTINUE WITH
;INTERRUPT
;PROCESSING

;
;

The complete assembled program listing is printed in
Appendix A. The resulting code consists of 67 program
statements, not counting declarations and comments,
which assemble into 150 bytes of object code. Each pass
through the service routine requires (coincidently)
67 ms plus 32 ms once per second for the electrical test.
If executed every 4 ms as suggested this software would
typically reduce the throughput of the background pro-
gram by less than 2%.

Once a microcomputer has been designed into a system,
new features suddenly become virtually free. Software
could make the emergency blinkers flash alternately or
at a rate faster than the turn signals. Turn signals could
override the emergency blinkers. Adding more bulbs
would allow multiple tail light sequencing and syncopa-
tionÐtrue flash factor, so to speak.

Design Example Ý5ÐComplex Control
Functions

Finally, we’ll mix byte and bit operations to extend the
use of 8051 into extremely complex applications.

Programmers can arbitrarily assign I/O pins to input
and output functions only if the total does not exceed
32, which is insufficient for applications with a very
large number of input variables. One way to expand the
number of inputs is with a technique similar to multi-
plexed-keyboard scanning.

Figure 19 shows a block diagram for a moderately com-
plex programmable industrial controller with the fol-
lowing characteristics:

64 input variable sensors:

12 output signals:

Combinational and sequential logic computations:

Remote operation with communications to a host
processor via a high-speed full-duplex serial link:

Two prioritized external interrupts:

Internal real-time and time-of-day clocks.

While many microprocessors could be programmed to
provide these capabilities with assorted peripheral sup-
port chips, an 8051 microcomputer needs no other inte-
grated circuits!

The 64 input sensors are logically arranged as an 8x8
matrix. The pins of Port 1 sequentially enable each col-
umn of the sensor matrix: as each is enabled Port 0
reads in the state of each sensor in that column. An
eight-byte block in bit-addressable RAM remembers
the data as it is read in so that after each complete scan
cycle there is an internal map of the current state of all
sensors. Logic functions can then directly address the
elements of the bit map.

30

AP-70

203830–19

Figure 19. Block Diagram of 64-Input Machine Controller

The computer’s serial port is configured as a nine-bit
UART, transferring data at 17,000 bytes-per-second.
The ninth bit may distinguish between address and data
bytes.

The 8051 serial port can be configured to detect bytes
with the address bit set, automatically ignoring all oth-
ers. Pins INT0 and INT1 are interrupts configured re-
spectively as high-priority, falling-edge triggered and
low-priority, low-level triggered. The remaining 12 I/O
pins output TTL-level control signals to 12 actuators.

There are several ways to implement the sensor matrix
circuitry, all logically similar. Figure 20a shows one
possibility. Each of the 64 sensors consists of a pair of
simple switch contacts in series with a diode to permit
multiple contact closures throughout the matrix.

The scan lines from Port 1 provide eight un-encoded
active-high scan signals for enabling columns of the
matrix. The return lines on rows where a contact is
closed are pulled high and read as logic ones. Open
return lines are pulled to ground by one of the 40 kX
resistors and are read as zeroes. (The resistor values
must be chosen to ensure all return lines are pulled
above the 2.0V logic threshold, even in the worst-case,

31

AP-70

where all contacts in an enabled column are closed.)
Since P0 is provided open-collector outputs and high-
impedance MOS inputs its input loading may be con-
sidered negligible.

The circuits in Figures 20b–20d are variations on this
theme. When input signals must be electrically isolated
from the computer circuitry as in noisy industrial envi-
ronments, phototransistors can replace the switch diode
pairs and provide optical isolation as in Figure 20b.
Additional opto-isolators could also be used on the con-
trol output and special signal lines.

The other circuits assume that input signals are already
at TTL levels. Figure 20c uses octal three-state buffers
enabled by active-low scan signals to gate eight signals
onto Port 0. Port 0 is available for memory expansion
or peripheral chip interfacing between sensor matrix
scans. Eight-to-one multiplexers in Figure 20d select
one of eight inputs for each return line as determined
by encoded address bits output on three pins of Port 1.
(Five more output pins are thus freed for more control
functions.) Each output can drive at least one standard
TTL or up to 10 low-power TTL loads without addi-
tional buffering.

Going back to the original matrix circuit, Figure 21
shows the method used to scan the sensor matrix. Two
complete bit maps are maintained in the bit-addressable
region of the RAM: one for the current state and one
for the previous state read for each sensor. If the need
arises, the program could then sense input transitions
and or debounce contact closures by comparing each
bit with its earlier value.

The code in Example 3 implements the scanning algo-
rithm for the circuits in Figure 20a. Each column is
enabled by setting a single bit in a field of zeroes. The
bit maps are positive logic: ones represent contacts that
are closed or isolators turned on.

Example 3.
INPUT SCAN: ;SUBROUTINE TO READ

;CURRENT STATE
;OF 64 SENSORS AND
;SAVE IN RAM 20H-27H

MOV R0,#20H ;INITIALIZE
;POINTERS

MOV R1,#28H ;FOR BIT MAP
;BASES

MOV A,#80H ;SET FIRST BIT
;IN ACC

SCAN; MOV P1,A ;OUTPUT TO SCAN
;LINES

RR A ;SHIFT TO ENABLE
;NEXT COLUMN
;NEXT

MOV R2,A ;REMEMBER CUR-
;RENT SCAN
;POSITION

MOV A,P0 ;READ RETURN
;LINES

XCH A,@R0 ;SWITCH WITH
;PREVIOUS MAP
;BITS

MOV @R1,A ;SAVE PREVIOUS
;STATE AS WELL

INC R0 ;BUMP POINTERS
INC R1
MOV A,R2 ;RELOAD SCAN

;LINE MASK
JNB ACC,7;SCAN:;LOOP UNTIL ALL

;EIGHT COLUMNS
;READ

RET

32

AP-70

203830–20

a.) Using Switch Contact/Diode Matrix

Figure 20. Sensor Matrix Implementation Methods

33

AP-70

203830–21

b.) Using Optically-Coupled Isolators

Figure 20. Sensor Matrix Implementation Methods (Continued)

34

AP-70

203830–22

c.) Using TTL Three-State Buffers

Figure 20. Sensor Matrix Implementation Methods (Continued)

35

AP-70

203830–23

d.) Using TTL Data Selectors

Figure 20. Sensor Matrix Implementation Methods (Continued)

36

AP-70

203830–24

Figure 21. Flowchart for

Reading in Sensor Matrix

What happens after the sensors have been scanned de-
pends on the individual application. Rather than in-

venting some artificial design problem, software corre-
sponding to commonplace logic elements will be dis-
cussed.

Combinatorial Output Variables. An output variable
which is a simple (or not so simple) combinational
function of several input variables is computed in the
spirit of Design Example 3. All 64 inputs are represent-
ed in the bit maps: in fact, the sensor numbers in Figure
20 correspond to the absolute bit addresses in RAM!
The code in Example 4 activates an actuator connected
to P2.2 when sensors 12, 23, and 34 are closed and
sensors 45 and 56 are open.

Example 4.

Simple Combinatorial Output Variables.

;SET P2.24(12)(23)(34)(45)(56)
MOV C,12
ANL C,23
ANL C,34
ANL C, 45
ANL C, 56
MOV P2.2,C

Intermediate Variables. The examination of a typical
relay-logic ladder diagram will show that many of the
rungs control not outputs but rather relays whose con-
tacts figure into the computation of other functions. In
effect, these relays indicate the state of intermediate
variables of a computation.

The MCS-51 solution can use any directly addressable
bit for the storage of such intermediate variables. Even
when all 128 bits of the RAM array are dedicated (to
input bit maps in this example), the accumulator, PSW,
and B register provide 18 additional flags for intermedi-
ate variables.

For example, suppose switches 0 through 3 control a
safety interlock system. Closing any of them should de-
activate certain outputs. Figure 22 is a ladder diagram
for this situation. The interlock function could be re-
computed for every output affected, or it may be com-
puted once and save (as implied by the diagram). As
the program proceeds this bit can qualify each output.

37

AP-70

Example 5. Incorporating Override signal into actu-
ator outputs.

; CALL INPUT SCAN
MOV C,0
ORL C,1
ORL C,2
ORL C,3
MOV F0,C

;
; COMPUTE FUNCTION 0
;

ANL C, F0
MOV PL0,C

;
; COMPUTE FUNCTION 1
;

ANL C, F0
MOV P1,1,C

;
; COMPUTE FUNCTION 2
;

ANL C, F0
MOV P1,2,C

;

203830–25

Figure 22. Ladder Diagram for

Output Override Circuitry

Latching Relays. A latching relay can be forced into
either the ON or OFF state by two corresponding input
signals, where it will remain until forced onto the oppo-
site stateÐanalogous to a TTL Set/Reset flip-flop. The
relay is used as an intermediate variable for other calcu-
lations. In the previous example, the emergency condi-
tion could be remembered and remain active until an
‘‘emergency cleared’’ button is pressed.

Any flag or addressable bit may represent a latching
relay with a few lines of code (see Example 6).

Example 6. Simulating a latching relay.

;I SET SET FLAG 0 IF C41
I SET: ORL C,F0

MOV F0,C
;

;I RSET RESET FLAG 0 IF C41
I RSET: CPS C

ANL C,F0
MOV F0,C

;

Time Delay Relays. A time delay relay does not re-
spond to an input signal until it has been present (or
absent) for some predefined time. For example, a bal-
last or load resistor may be switched in series with a
D.C. motor when it is first turned on, and shunted from
the circuit after one second. This sort of time delay may
be simulated by an interrupt routine driven by one of
the two 8051 timer counters. The procedure followed
by the routine depends heavily on the details of the
exact function needed: time-outs or time delays with
resettable or non-resettable inputs are possible. If the
interrupt routine is executed every 10 milliseconds the
code in Example 7 will clear an intermediate variable
set by the background program after it has been active
for two seconds.

Example 7. Code to clear USRFLG after a fixed
time delay.

JNB USR FLG,NXTTST
DJNZ DLAY COUNT,NXTTST
CLR USR FLG
MOV DLAY COUNT,#200

NXTTST; ;..

38

AP-70

Serial Interface to Remote Processor. When it detects
emergency conditions represented by certain input
combinations (such as the earlier Emergency Override),
the controller could shut down the machine immediate-
ly and/or alert the host processor via the serial port.
Code bytes indicating the nature of the problem could
be transmitted to a central computer. In fact, at 17,000
bytes-per-second, the entire contents of both bit maps
could be sent to the host processor for further analysis
in less than a millisecond! If the host decides that con-
ditions warrant, it could alert other remote processors
in the system that a problem exists and specify which
shut-down sequence each should initiate. For more in-
formation on using the serial port, consult the MCS-51
User’s Manual.

Response Timing

One difference between relay and programmed indus-
trial controllers (when each is considered as a ‘‘black
box’’) is their respective reaction times to input chang-
es. As reflected by a ladder diagram, relay systems con-
tain a large number of ‘‘rungs’’ operating in parallel. A
change in input conditions will begin propagating
through the system immediately, possibly affecting the
output state within milliseconds.

Software, on the other hand, operates sequentially. A
change in input states will not be detected until the next
time an input scan is performed, and will not affect the
outputs until that section of the program is reached.
For that reason the raw speed of computing the logical
functions is of extreme importance.

Here the Boolean processor pays off. Every instruction
mentioned in this Note completes in one or two micro-
secondsÐthe minimum instruction execution time for
many other microcontrollers! A ladder diagram con-
taining a hundred rungs, with an average of four con-
tacts per rung can be replaced by approximately five
hundred lines of software. A complete pass through the
entire matrix scanning routine and all computations
would require about a millisecond: less than the time it
takes for most relays to change state.

A programmed controller which simulates each Boole-
an function with a subroutine would be less efficient by
at least an order of magnitude. Extra software is needed
for the simulation routines, and each step takes longer
to execute for three reasons: several byte-wide logical
instructions are executed per user program step (rather
than one Boolean operation): most of those instructions
take longer to execute with microprocessors performing
multiple off-chip accesses: and calling and returning
from the various subroutines requires overhead for
stack operations.

In fact, the speed of the Boolean Processor solution is
likely to be much faster than the system requires. The
CPU might use the time left over to compute feedback
parameters, collect and analyze execution statistics,
perform system diagnostics, and so forth.

Additional Functions and Uses

With the building-block basics mentioned above many
more operations may be synthesized by short instruc-
tion sequences.

Exclusive-OR. There are no common mechanical devic-
es or relays analogous to the Exclusive-OR operation,
so this instruction was omitted from the Boolean
Processor. However, the Exclusive-OR or Exclusive-
NOR operation may be performed in two instructions
by conditionally complementing the carry or a Boolean
variable based on the state of any other testable bit.

;EXCLUSIVE-;OR FUNCTION IMPOSED ON CARRY

;USING F0 IS INPUT VARIABLE.

;XOR F0: JNB F0,XORCNT ;(‘JB‘ FOR X-NOR)

CPL C

;XORCNT:

XCH. The contents of the carry and some other bit may
be exchanged (switched) by using the accumulator as
temporary storage. Bits can be moved into and out of
the accumulator simultaneously using the Rotate-

39

AP-70

through-carry instructions, though this would alter the
accumulator data.

;EXCHANGE CARRY WITH USRFLG
XCHBIT: RLC A

MOV C,USR FLG
RRC A
MOV USR FLG,C
RLC A

Extended Bit Addressing. The 8051 can directly address
144 general-purpose bits for all instructions in Figure
3b. Similar operations may be extended to any bit any-
where on the chip with some loss of efficiency.

The logical operations AND, OR, and Exclusive-OR
are performed on byte variables using six different ad-
dressing modes, one of which lets the source be an im-
mediate mask, and the destination any directly address-
able byte. Any bit may thus be set, cleared, or comple-
mented with a three-byte, two-cycle instruction if the
mask has all bits but one set or cleared.

Byte variables, registers, and indirectly addressed RAM
may be moved to a bit addressable register (usually the
accumulator) in one instruction. Once transferred, the
bits may be tested with a conditional jump, allowing
any bit to be polled in 3 microsecondsÐstill much fast-
er than most architecturesÐor used for logical calcula-
tions. (This technique can also simulate additional bit
addressing modes with byte operations.)

Parity of bytes or bits. The parity of the current accu-
mulator contents is always available in the PSW, from
whence it may be moved to the carry and further
processed. Error-correcting Hamming codes and simi-
lar applications require computing parity on groups of
isolated bits. This can be done by conditionally comple-
menting the carry flag based on those bits or by gather-
ing the bits into the accumulator (as shown in the DES
example) and then testing the parallel parity flag.

Multiple byte shift and CRC codes

Though the 8051 serial port can accommodate eight- or
nine-bit data transmissions, some protocols involve
much longer bit streams. The algorithms presented in

Design Example 2 can be extended quite readily to 16
or more bits by using multi-byte input and output buff-
ers.

Many mass data storage peripherals and serial commu-
nications protocols include Cyclic Redundancy (CRC)
codes to verify data integrity. The function is generally
computed serially by hardware using shift registers and
Exclusive-OR gates, but it can be done with software.
As each bit is received into the carry, appropriate bits
in the multi-byte data buffer are conditionally comple-
mented based on the incoming data bit. When finished,
the CRC register contents may be checked for zero by
ORing the two bytes in the accumulator.

4.0 SUMMARY

A truly unique facet of the Intel MCS-51 microcomput-
er family design is the collection of features optimized
for the one-bit operations so often desired in real-world,
real-time control applications. Included are 17 special
instructions, a Boolean accumulator, implicit and direct
addressing modes, program and mass data storage, and
many I/O options. These are the world’s first single-
chip microcomputers able to efficiently manipulate, op-
erate on, and transfer either bytes or individual bits as
data.

This Application Note has detailed the information
needed by a microcomputer system designer to make
full use of these capabilities. Five design examples were
used to contrast the solutions allowed by the 8051 and
those required by previous architectures. Depending on
the individual application, the 8051 solution will be eas-
ier to design, more reliable to implement, debug, and
verify, use less program memory, and run up to an or-
der of magnitude faster than the same function imple-
mented on previous digital computer architectures.

Combining byte- and bit-handling capabilities in a sin-
gle microcomputer has a strong synergistic effect: the
power of the result exceeds the power of byte- and bit-
processors laboring individually. Virtually all user ap-
plications will benefit in some way from this duality.
Data intensive applications will use bit addressing for
test pin monitoring or program control flags: control
applications will use byte manipulation for parallel I/O
expansion or arithmetic calculations.

It is hoped that these design examples give the reader
an appreciation of these unique features and suggest
ways to exploit them in his or her own application.

40

AP-70

APPENDIX A
Automobile Turn-Indicator
Controller Program Listing

2
0
3
8
3
0
–
2
6

A-1

AP-70

2
0
3
8
3
0
–
2
7

A-2

AP-70

2
0
3
8
3
0
–
2
8

A-3

AP-70

2
0
3
8
3
0
–
2
9

INTEL CORPORATION, 2200 Mission College Blvd., Santa Clara, CA 95052; Tel. (408) 765-8080

INTEL CORPORATION (U.K.) Ltd., Swindon, United Kingdom; Tel. (0793) 696 000

INTEL JAPAN k.k., Ibaraki-ken; Tel. 029747-8511

Printed in U.S.A./xxxx/0296/B10M/xx xx

	1.0 Introduction
	2.0 Boolean Processor Operation
	3.0 Boolean Processor Applications
	4.0 Summary
	Appendix A Automobile Turn-Indicator Controller Program Listing
	FIGURES
	Figure 1. 8051 Family Pinout Diagram
	Figure 2. Block Diagram for Abstract Digital Computer
	Figure 3. Bit Addressing Instruction Formats
	Figure 4. Bit Address Maps
	Figure 5. PSW—Program Status Word Organization
	Figure 6. P3—Alternate I/O Functions of Port 3
	Figure 7. Peripheral Configuration Registers
	Figure 8. Bit Transfer Instruction Operation
	Figure 9. DES Key Schedule Transformation
	Figure 10a. Flowchart for Key Permutation Attempted with a Byte Processor
	Figure 10b. DES Key Permutation with Bollean Processor
	Figure 11. Secure Banking Terminal Block Diagram
	Figure 12. Serial I/O Algorithms
	Figure 13. Hardware Implementations of Boolean Functions
	Figure 14. Flow Chart for Tree-Branching Algorithm
	Figure 15. TTL Logic Implementation of Automotive Turn Signals
	Figure 16. Microcomputer Turn-Signal Connections
	Figure 17. Output Expansion Using Serial Port
	Figure 18.
	Figure 19. Block Diagram of 64-Input Machine Controller
	Figure 20. Sensor Matrix Implementation Methods
	Figure 21. Flowchart for Reading in Sensor Matrix
	Figure 22. Ladder Diagram for Output Override Circuitry

	TABLES
	Table 1. Features of Intel's Single-Chip Microcomputers
	Table 2. MCS-51 Boolean Processing Instruction Subset
	Table 3. Other Instructions Affecting the Carry Flag
	Table 4a. contrasting 8048 and 8051 Bit Control and Testing Instructions
	Table 4b. Replacing 8048 Instruction Sequences with Single 8x51 Instructions
	Table 5. Serial I/O Programs for Various Microprocessors
	Table 6. Truth Table for Turn-Signal Operation
	Table 7. Non-Trivial Duty Cycles

