EECS 281: Homework #5

Due: Tuesday, October 26, 2004

Name: _____

Email: _____

- 0. Practice, study (do not hand in) Wakerly problems (solutions at www.wakerly.com): 4.13(a) and 4.13(b).
- 1a. Apply T13 & T4 to the expression \overline{abc} resulting in:
- 1b. Apply T13 & T4 to the expression $\overline{a \vee \overline{b} \vee \overline{c}}$ resulting in:
- 1c. Apply T8 to the expression $(a \lor b)(a \lor \bar{b})$ resulting in (note: same as saying: $(a + b)(a + \bar{b})$:
- 1d. Apply T8 to the expression $(a \lor b)(a \lor \overline{b})(\overline{a} \lor b)$ resulting in:
- 1e. Given the minterms $\sum_{abc}(1,2,4,7)$, write the DNF (i.e. SOP) expression:
- 1f. Give the maxterms of 1e: _____
- 1g. Give the CNF (i.e. POS) expression of 1f (read Wakerly page 208):
- 1h. Draw the logic gate schematic of 1g:
- 2a. Give the truth table, minterms, and Maxterms for the following function $f(a, b, c) = \overline{ab \lor ac} \lor \overline{a}$;

a b c	$a\overline{b}$	ac	$a\bar{b}\vee ac$	$a\bar{b}\vee ac$	\bar{a}	f	minterms	maxterms
0 0 0								
001								
010								
011								
$1 \ 0 \ 0$								
$1 \ 0 \ 1$								
$1 \ 1 \ 0$								
111								

- 2b. Using boolean algebra (Wakerly page 199 Table 4-2, page 201, Table 4-3), give the DNF (i.e. SOP):
 - 2b. Applying theorem T13' on $\overline{ab} \vee ac} \vee \bar{a}$, we now have ______
 - 2b. Applying theorem T13, we now have _____
 - 2b. Applying theorem T4, we now have _____
 - 2b. Applying theorem T8', we now have _____

2b. Factor out \bar{a} and applying theorem T2, we now have _____

2bbb. Applying theorem T1', we now have ______ (note: Does 2bbb match the truth table of 2a?)

2c. Give the n-cubes for part 2bbb: _____

2d. Give the minterms (i.e. 0-cubes or ON-set) for part 2bbb:

2e. Did 2d match your truth table of 2a? _____

2f. Fill in the k-map from 2bbb, showing circles of only the terms of 2bbb:

	$\bar{b}\bar{c}$	$\overline{b}c$	bc	$b\bar{c}$
ā				
a				

2g. Give the optimal minimal SOP of 2f: _____

2h. Give the Maxterms (i.e. OFF-set) from part 2d: _____

2i. Give the CNF of 2h (i.e. canonical product, POS, see Wakerly, page 208):

3a. Show by circling in the k-map each term in function $f(a, b, c) = \bar{a}\bar{b} \vee \bar{b}c \vee ac \vee ab \vee \bar{c}\bar{b};$

	$b\bar{c}$	bc	bc	$b\bar{c}$
ā				
a				

3b. Show the optimal minimal circling in the k-map of 3a (Wakerly, page 223, Fig. 4-27, Fig. 4-29):

	$\bar{b}\bar{c}$	$\bar{b}c$	bc	$b\bar{c}$
\bar{a}				
\mathbf{a}				

3c. Give the Minimal SOP of the k-map: _____

3d. Give the CNF (i.e POS) of 3c: _____

4a Show by circling in the k-map each term in function $f(a, b, c, d) = \bar{a}\bar{b}\bar{c} \vee \bar{b}c \vee bcd;$

	$\bar{c}\bar{d}$	$\bar{c}d$	cd	$c\bar{d}$
$\bar{a}\bar{b}$				
$\bar{a}b$				
ab				
$a\bar{b}$				

4b Show the optimal mimimal circling in the k-map of 4a:

	$\bar{c}\bar{d}$	$\bar{c}d$	cd	$c\bar{d}$
$\bar{a}\bar{b}$				
$\bar{a}b$				
ab				
$a\overline{b}$				

4c. Give the Minimal SOP of the k-map: _____

4d. Give the CNF (i.e POS) of 4c: _____

4e. Give the minterms of the k-map in 4a: _____

4f. Group the minterms of 4e by the number of 1's:

4g. Do the Quine-McCluskey Algorithm in 4f.

5a Show the optimal k-map for $\sum_{a,b,c,d} (1,2,3,5,7)$:

	$\bar{c}\bar{d}$	$\bar{c}d$	cd	$c\bar{d}$
$\bar{a}\bar{b}$				
$\bar{a}b$				
ab				
$a\bar{b}$				

5b. Give the Minimal SOP of the k-map: _____

5c. Given the don't cares (10,11,12,13,14,15), show the optimal k-map:

	$\bar{c}\bar{d}$	$\bar{c}d$	cd	$c\bar{d}$
$\bar{a}\bar{b}$				
$\bar{a}b$				
ab				
$a\overline{b}$				

5d. Give the Minimal SOP of the k-map: _____

5e. Do the Quine-McCluskey Algorithm of 5a only (not 5c):

6. A programmer as written the following C code fragment:

6a. Give the truth table for the variable f (assume that a, b, c are boolean values only):

6b. Give the optimal k-map of 6a.

	$\bar{b}\bar{c}$	$\bar{b}c$	bc	$b\bar{c}$
\bar{a}				
a				

6c. Give the optimal minimum SOP:

6d. Re-write as optimal C code: