Name:

Problem 1 (20%). Given the following <u>direct-mapped</u> cache architecture: All instructions use byte addresses. The address bus is 8 bits. A <u>word size is 16 bits</u>. Total data cache size 4 words.

- **1a.** (2%) How many bits is the index?
- **1b.** (2%) How many bits is the byte offset?
- 1c. (2%) How many bits is the tag size?
- 1d. (14%) For the following instruction sequence, fill in the access bits to the data cache

tag	index	byte offset		instruction
			lw	\$1, 32(\$0)
			lw	\$2, 34(\$0)
			add	\$3, \$1, \$2
			SW	\$3, 44(\$0)
			lw	\$4, 12(\$0)
			lbu	\$5, 41(\$0)
			beq	\$1, \$2, 34(\$0)

- Problem 2 (10%). Given the following <u>2-way set associative</u> cache architecture: All instructions use byte addresses. The address bus is 8 bits. A word size is 16 bits. Total data cache size 4 words.
- 2a. (2%) How many bits is the index?
- **2b.** (2%) How many bits is the byte offset?
- 2c. (2%) How many bits is the tag size?

2d. (4%) For the following instruction se	quence, fill in the_access bits to the data cache
---	--

tag	index	byte offset	instru	ction
			lw	\$1.32(\$0)
				+) - (+ -)
			lbu	\$2 33(\$0)
			ibu	$\psi 2, 00(\psi 0)$

Problem 3. (15%) For the following instruction sequence fill in the <u>direct-mapped</u> cache The word size is 16 bits. Memory[0]=0x1066; Memory[2]=0x1453; Memory[16]=\$3=0x1776; Memory[20]=0x1914;

tag	index	byte offset	instruction	Valid or Tag Cache Miss?
000	00	0	lw \$1, 0(\$0)	
000	01	0	lw \$2, 2(\$0)	
010	00	0	sw \$3, 16(\$0)	
010	10	1	lbu \$5, 21(\$0)	
010	10	0	lw \$6, 20(\$0)	

3a. (5%) Fill in the miss cache column.

3b. (10%) The final state of the direct mapped data cache is:

index	valid	tag	data

Problem 4. (15%) For the following instruction sequence fill in the <u>2-way set associative LRU</u> cache The word size is 16 bits.

Memory[0]=0x1066; Memory[2]=0x1453; Memory[16]=\$3=0x1776; Memory[20]=0x1914;

4a. (5%) Fill in the miss cache column.

tag	index	byte offset	instru	uction	Valid or tag
					Cache Miss?
000	0	0	lw	\$1, 0(\$0)	
100	0	0	SW	\$3, 16(\$0)	
000	0	1	lbu	\$5, 1(\$0)	
101	0	0	lw	\$6, 20(\$0)	
000	1	0	lw	\$1, 2(\$0)	

4b. (10%) The final state of the 2-way set associative LRU data cache is:

index	valid	tag	data
0			
1			

Problem 5. (10%) Given a 1-word cache entry block size and one word wide memory bus organization (figure 7.13a, page 561), and the following access times:

1 clock cycle to send the address,

- 8 clock cycles to read access DRAM, 16 clock cycles to write to DRAM
- 1 clock cycle to to send a word

5a. (5%) What is the miss penalty for a <u>write-through</u> direct mapped cache?

5b. (5%) What is the miss penalty for a write-back direct mapped cache?

Problem 6 (20%). Given the following <u>virtual memory</u> architecture:

All instructions use byte addresses. The virtual address bus is 16 bits. A word is 16 bits. Total page size 8 bytes. The real memory address bus is 16 bits.

- 6a. (2%) How many bits is the page offset?
- 6b. (2%) How many bits is the physical page number size?
- 6c. (2%) How many page table entries?
- **6d.** (2%) How large is the page table?

6e. (12%) For the following instruction sequence, fill in the data access bits to the page table

U	-			
virtual page number	page offset		instruction	
		lw	\$1, 32(\$0)	
		lw	\$2, 34(\$0)	
			. , (. ,	
		lbu	\$5, 41(\$0)	
			· / (+ - /	

Problem 7. (10%) Assume 2K real memory, LRU, a page size of 1K and no pages loaded. Fill in the page fault columns

	instruction	Page fault?	Flush which page?	Write flushed page to disk?	Load what new page
lw	\$1, 32(\$0)				
lw	\$2, 34(\$0)				
lbu	\$5, 41(\$0)				
SW	\$6, 1100(\$0)				
lw	\$7, 2000(\$0)				
lw	\$1, 4100(\$0)				
lw	\$2, 32(\$0)				