LNy "-.q
R
-

CWRU EECS 314 V1

Review: Control Flow

* A Decision allows us to decide which pieces of
code to execute at run-time rather than at compile-
time.

e C Decisions are made using conditional
statements within an if, while, do while or for.

« MIPS Decision making instructions are the
conditional branches: beq and bne.

e In order to help the conditional branches make
decisions concerning inequalities, we introduce a
single instruction: “Set on Less Than”called slt,
slti, sltu, sltul

CWRU EECS 314 2

Review: Control flow: if, ?:, while, for

. ?%(condition) sl; else s2; e variable = condition ? s1: sh2_f;
If (! condition) goto L1; If (! condition) goto L1;
sl; variable=s1;
~—"""goto LZ; goto L2;
L1: s2; [*else*/ L1. variable=s2; /* else */
w2 L2:
» while (condition) s1; o for (init; condition; inc) s1;
Init;
erZ: If (! condition) goto L1; L2:if (! condition) goto L1;
s1; si,;
g OO L 2; INC;
goto L2;

L1: /* exit loop */ L1: /* exit loop */

Control flow: do-while

@ e
e while (condition) s1; e do s1; while (condition);
» for(;condition;) s1; - for(s1;condition;) s1;

WLZ: If (! condition) goto L1; w L2:

s1; sl
S OO L 2; ~—— If (condition) goto L2;
L1: /* exit loop */ [* exit loop by fall though */

e Tests the termination
condition at the bottom
after making each pass
through the loop body.

e O or more times e 1 Or more times
CWRUEECS 314 4

e Tests the termination
condition at the top.

Cﬁgntrol flow: break (from K&R) o

e A break causes the innermost enclosing loop or switch to
be exited immediately.

[*clear lower triangle array*/ 1=0;
for(i=0; 1<10; i++){ L2:1f (i >= 10) goto L1,
for(j=0; j<10; j++){ j=0;
L4: if (] >= 10) goto L3;
If (I>=)) break; If (I>=]) goto L3;
a[i][J]=0; ali][1]=0;
J++;
goto L4;
} L3: /* exit loop */
|++:
goto L2;

} L1: /* exit loop */

MIPS Goto Instruction

e In addition to conditional branches, MIPS has an
unconditional branch:] label

e Called a Jump Instruction:
jump (or branch) directly to
the given label without
needing to satisfy any
condition.

e Same meaning as (using C): goto label

e Technically, it's the same as: beq $0,$0,label
e since It always satisfies the condition.

CWRUEECS 314 6

C

ontrol Machine Instructions (Appendix A-60 to A-65)

e beq 9%rs, $rt, wordoffsetl6

e bne $rs, $rt, wordoffsetl6

&

| wordoffset26

slt $rd, $rs, $rt
slti $rt, $rs, constl6
sltu $rd, $rs, $rt

sltiu $rt, $rs, constl6

$if ($rs = = $rt) goto wordoffsetl6;
$if ($rs = $rt) goto wordoffsetl6;

goto wordoffset26;

$rd = ($rs < $rt) 2 1:0;

$rt = ($rs < constl6) ? 1 : O;
$rd=((unsigned)$rs<(unsigned)$rt)?1:0;
$rt =((unsigned)$rs < constl16)? 1 : 0;

CWRU EECS 314 7

Sg/gUC’[Ul‘ed programming (Programming Languages, K. Louden)

e Ever since a famous letter by E. W. Dijkstra in 1968 GOTOS
have been considered suspect, since

e they can so easily lead to unreadable “spaghetti” code.

« The GOTO statement is very close to actual machine code.

e As Dijkstra pointed out, its “unbridled” use can compromise
even the most careful language design and lead to
undecipherable programs.

e Dijkstra proposed that its use be severely controlled or even
abolished.

 This unleashed one of the most persistent controversies in
programming, which still rages today...

CWRU EECS 314 8

Sg/gUC’[Ul‘ed programming (Programming Languages, K

.Loudenl

» efficiency: One group argues that the GOTO is
Indispensable for efficiency & even for good structure.

—

e Such as state machines (LEX, YACC, parsers)
 Break out of deeply nested loop in one step
— C/C++ can only do inner most loop

— C/C++ can use exit flags in each loop level (ugly)
e GOTOs should only jump forward (never backward)
e Error handling (gotos are still more efficient)

— C/C++/Unix can use the signal() function

— C++ can use the throw/catch statements

 l[imited: Another argues that it can be useful under carefully
limited circumstances. (parsers, state machines).

« abolish: A third argues that it is an anachronism that should
truly be abolished henceforth from all computer languages.

Control flow: continue (from K&R)

7 e
« The continue statement is related to the break. C/C++ is
one of the few languages to have this feature.

[t causes the next iteration of the enclosing for, while, or
do loop to begin.

e In the while and do, this means that the condition part is
executed immediately.

e In the for, control passes to the increment step.

[* abs(array) */ 1=0;

for(i=0; i < n; i++){ L2:if (i >=n) goto L1;
iIf (a[i] > 0) continue; If (a[i] > 0) goto L2c;
a[i] = -a[i]; a[i] = -all];

} L2C: I++;

goto L2;
L1: 10

L&gical Operators: && and | | (From K&R)

 More interesting are the logical operators && and |T

Bitwise and (&), bitwise or (|), bitwise not (~)
— Bitwise operators imply no order and parallel in nature

Logical and (&&), logical or(||), logical not (!)
—Logical operators imply order and sequential in nature

Expressions connected by && and | | are evaluated left to
right, and

evaluation stops as soon as the truth or falsehood of the
result is know.

« Most C programs rely on the above properties:
(1) left to right evaluation (2) stop as soon as possible.

CWRU EECS 314 11

L&gical Operators: example (From K&R)

 For example, hereis aloop from the input function getline
for(i1=0; i<limit-1 && (c=getchar())!="\n" && c!=EOF ; 1++){
ali] = c;

1=0; Before reading a new

L2: if (i >=limit-1) goto L1; character it is necessary
c=getchar(); to check.that there is room
. to store it in the array a.
If (c =="\n") goto L1, S
£ (c ——EOF L1 « So the test i<limit-1 must
T(c ==) goto L1; be made first

Al =& « Moreover, if the test fails,
I+ we must not go on and
goto L2; read another character

L1: CWRU EECS 314 12

Review: slti example

& i
« C code fragment
if (I <20){f=g+h;:} The $0 register becomes

useful again for the beq
else {f=g-h;}

e re-written C code MIPS code
temp = (i <20)? 1: 0; slti $t1,$s3,20
if (temp ==0) goto L1; beq $t1,$0,L1
f=g+h; add $s0,$s1,$s2
goto L2;] L2
L1: L1:
sub $s0,$s1,$s2
L2:

C functions

% — =
main() { e Functions, procedures one
inti,j, k, m: of main ways to give a
| = mult(k): ... program structure, and

encourage reuse of code.

— 1t(1,1); ...
m = mult(i,) e But they do not add any

; more computational power.
Int mult (int x, inty) {
Int f;
for (f=0;y >0; y- - _ _
OfrJE: XO_’ y>0ry--)1 What information must
} | compiler/programmer
return f: keep track of?

}

CWRU EECS 314 14

Calling functions: Bookkeeping

@ T e—r o]
 Function address Labels
e Return address $ra (same as $31)
« Arguments $a0, $al, $a2, $a3
e Return value $vO0, $vi
e Local variables $s0, $s1, ..., $s7

« Most problems above are solved simply by
using register conventions.

CWRU EECS 314 15

%

Calling functions: example

i
2l

... c=sum(a,b); ... /*a,b,c:$s0,$s1,$s2 */

}
Int sum(int x, inty) {
return x+y;

gddress

1000 adg

1004 adc

1008 ada

1012]

$a0,$s0,$0 #X=a
$al,$s1,%0 #y=Db
| $ra,$0,1016 # $ra=1016
sum #jump to sum
c=%v0

1016 [» add $52.$0.$v0
‘Why jr$ravs. | 1016 to return?l

2000 sum: add $v0,%a0,%al # x+y
$ra

2004 Jr

#pcC = $ra cwrbEtSa 16

Cyglling functions: jal, jump and link I

e Single instruction to jump and save return
address: jump and link (jal)

e slow way:
1008 addi $ra,$zero,1016 #$ra=1016
1012] sum #go to sum

» faster way and save one instruction:
1012 jal sum #pc =%ra=1016

e but adds more complexity to the hardware

« Why have a jal? Make the common case fast:
functions are very common.

CWRU EECS 314 17

Cglling functions: setting the return address

— %]

11

e Syntax for jal Jump and link) is same as forT
jJump):
jal label # reg[$ra]=pc+4; pc=label

* Jal should really be called laj for “link and jump”:

e Step 1 (link):
Save address of next instruction into $ra (Why?)

e Step 2 (Jump):
Jump to the given label

CWRU EECS 314 18

Calling functions: return

d ————C
e Syntax for jr (jJump register):
Jr $register

e Instead of providing a label to jump to,
the jr instruction provides a register that contains
an address to jump to.

e Usually used in conjunction with jal,
to jump back to the address that
jal stored in $ra before function call.

CWRU EECS 314 19

Cﬂglling nested functions: example R

iInt sumSquare(int x, inty) {
return mult(x, x)+vy;

}

« Something called sumSquare,
now sumSquare Is calling mult(x, x).

e SO there’s avalue in $ra that sumSquare wants to
jump back to,

— but this will be overwritten by the call to mult.

 Need to save sumSquare return address before call
to mult(x, x).

CWRU EECS 314 20

Calling nested functions: memory areas

e In general, may need to save some other info In
addition to $ra.

* When a C program is run, there are 3 important
memory areas allocated:

—Static: Variables declared once per program,
cease to exist only after execution completes

—Heap: Variables declared dynamically

—Stack: Space to be used by procedure during
execution; this is where we can save register
values

e Not identical to the “stack” data structure!

CWRU EECS 314 21

C memory Allocation

Aq%dress
00
Stack
$Sp —
stack v
ointer
P t
Heap
Static
Code

|]
|] \
&

Space for saved
procedure information

Explicitly created space,
e.g., malloc(); C pointers

Variables declared once per
program (.data segment)

Program (.text segment)

CWRU EECS 314 22

Sﬁ;ack Discipline

e C,C++, Java follow “ Stack Discipline”;
—e.g., D cannot return to A bypassing B
—Frames can be adjacent in memory

—Frames can be allocated, discarded as a LIFO

(stack)
- « SO we have a register $sp
Main . :
A B which always points to the
last used space in the

stack.

 To use stack, we decrement
D this pointer by the amount
of space we need and then
E fill it with info.

C

CWRU EECS 314 23

C@gmpiling nested C func into MIPS N
Int sumSquare(int x, inty) {
return mult(x,x)+vy;
}
sumsSqguare:
subi $sp, $sp,12 # push stack stack
Prologue SW Ii&&(&mj # push return addr
sw | $al, 4($sp) # push y
sw $a0, Q($sp) # push X
addi $al, $a0,%0 # mult(x,X)
Body jal mult # call mult
w 530 O¥Ssp) # pop X
W r$a1,4($SD) | |[#popy
| w $ra, 8($sp) # pop return addr
Epilogue 549d $v0,$v0,$al # mult()+y

addi $sp,$sp,12
ir $ra

pop stack space

CWRU EECS 314 24

Frame Pointer B
I —_—

— %]

e The $fp points to the first word of the frame of a
function.

* A $sp might change during a function and so
references to a local variable in memory might have
different offsets depending where they are in the
function, making it harder to understand.

int f(int x, inty) {

o

Int I, a=4, f;

for(1=0;1<10;i++) {
Int a[20];
if (1) { a[0]=x; } else { a[i]=a[i-1]+y; }
f=all];

} } CWRU EECS 314 25

Mgmory Allocation o

stack

e C Procedure Call Frame Address Qrows

« Pass arguments ($a0- -
$a3)) (high
e Save caller-saved regs $tp— saved $a0-a3
e call function: jal $ra
e sSpace on stack ($sp-n) Saved
$sp@last word of frame Registers
e Save callee-saved regs Local
. set $fp ($sp+n-4) $sp— Variables

$fp@first word of frame
low

CWRU EECS 314 26

MIPS Register Summary

7 i

e Registers Total Regs
—$Zero, $0 1
—(Return) Value registers ($v0,$v1) 3
—Argument registers ($a0-$a3) 7
—Return Address ($ra) 8
—Saved registers ($s0-$s7) 16
—Temporary registers ($t0-$t9) 26
—Global Pointer ($gp) 27
—Stack Pointer ($sp) 28
—Frame Pointer ($fp), or $t10 29

« 2 for OS ($k0, $k1), 1 for assembler ($at)

CWRU EECS 314 27

