Problem 1 (30%). Show each step of the pipeline machine (page 470 and 469) for the following instruction sequence:

Assume \$1=9, \$2=8; Mem[12]=16. Treat the "nop" instruction as "add \$0,\$0,\$0".

sw \$1, 8(\$2) lw \$1, 4(\$2) nop nop

C lo c k	<if id=""> <pc, ir=""></pc,></if>	<id ex=""> <wb,m,ex,pc,a,b,s,rt,r d=""></wb,m,ex,pc,a,b,s,rt,r></id>	<ex mem=""> <wb,m,pc,z, alu,="" b,="" r=""></wb,m,pc,z,></ex>	<mem wb=""> <wb,mdr,alu,r> Both solutions ok</wb,mdr,alu,r></mem>
0	<0,?>	,?,?,?,?,?,?,?	,?,?,?,?,?	X = do not care or 36
1	<4,"sw \$1,8(\$2)"> <u>observe that</u> sw \$rt=\$1,8(\$rs=\$2)	,?,?,?,?,?,?,?	,?,?,?,?,?	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
2	<8,"lw \$1,4(\$2)"> observe that lw \$rt=\$1,4(\$rs=\$2)	<pre><0X, 001, X001, 4, 8, 9, 8, \$1,X> observe that <wb=1x, \$rd="X" \$rs→\$2→8→a,="" \$rt="\$1," \$rt→\$1→9→b,="" ex="X001," m="001," pc="4," s="4,"></wb=1x,></pre>	,?,?,?,?,?	,?,?,?,?
3	<12, "nop"> observe that add \$rd=0,\$rs=0,\$rt=0	<pre><11, 010, 0001, 8, 8, 9, 4, \$1,X> observe that <wb=11, \$rd="X" \$rs→\$2→8→a,="" \$rt="\$1," \$rt→\$1→9→b,="" ex="0001," m="010," pc="8," s="4,"></wb=11,></pre>	<pre><0X, 001, X or 36, X or 0, 16, 9, \$1> observe that <wb=1x, \$1="" 9,="" alu="S+\$2=8+8=16," m="001," pc="pc+(S<<2)=4+(8<<2)=36," z="0,"> Store to memory Mem[ALUOut] ← B Mem[16] ← 9</wb=1x,></pre>	,?,?,?
4	<16, "nop"> <u>observe that</u> add \$rd=0,\$rs=0,\$rt=0	<pre><10,000,1100,12,0,0,0,\$0,\$0> observe that <wb=10, \$rd="\$0" \$rs="\$0=0=A," \$rt="\$0," ex="1100," m="000," pc="12," s="0,"></wb=10,></pre>	<pre><11, 010, X or 24, X or 0, 12, 9, \$1> observe that <wb=11, \$1="" 9,="" alu="S+\$2=4+8=12," m="010," pc="pc+(S<<2)=8+(4<<2)=24," z="0,"> Load from memory Mem[12]—16</wb=11,></pre>	<pre><0X, X, X or 16, X or \$1> Nothing happens here! observe that <wb=0x, alu="16," mdr="X," r="\$1"></wb=0x,></pre>
5	<20, "nop"> observe that add \$rd=0,\$rs=0,\$rt=0	<pre><10, 000, 1100, 16, 0, 0, 0, \$0, \$0> observe that <wb=10, \$rd="\$0" \$rs="\$0=0=A," \$rt="\$0," ex="1100," m="000," pc="16," s="0,"></wb=10,></pre>	<pre><10,000,X,0,0,0,\$0> observe that <wb=10, alu="A+B=0+0=0," b="0," m="000," pc="X," r="\$0" z="0,"></wb=10,></pre>	<pre><11, 16, 12, \$1> =>Reg[\$1]←16 finally register 1 will contain the load memory word of 4 + \$12 observe that <wb=11, =mem[12]="16," alu="12," mdr="Mem[ALU]" r="\$1"></wb=11,></pre>

Problem 2 (50%). Assume a simple 5 stage pipeline with the following execution times

1	IF	Instruction fetch	3 ns
2	ID	Register Read	1 ns
3	EX	ALU	3 ns; Branch decision made here
4	MEM	Data Access	Memory Write time=5 ns, Read time=4 ns
5	WB	Register Write	2 ns

This computer has the following instructions:

Instru	ıction	Operation						
add	\$rd, \$rs, \$rt	\$rd = \$rs + \$rt						
lw	\$rt, addr16(\$rs)	\$rt = Mem[addr16+\$rs]						
sw	\$rt, addr16(\$rs)	Mem[addr16+\$rs]=\$rt						
beq	\$rs, \$rt, disp16	pc = pc+2+(rs-rt=0?disp16:0)						

2a (10%) Fill in the following tables

(10%) I III III the following tables										
Instruc	IM	ID	EX	MEM	WB	Total	Multi-	Instruction		
tion						Time	Cycles	Mix		
add	3 ns	1 ns	3ns		2 ns	9 ns	4	50%		
lw	3 ns	1 ns	3 ns @+\$rs	4 ns	2 ns	13 ns	5	20%		
SW	3 ns	1 ns	3 ns @+\$rs	5 ns		12 ns	4	10%		
beq	3 ns	1 ns	3 ns			7 ns	3	20%		

2b (2%) Fill the following table and show work.

Instruction	Clock	PI	MIPS
	frequency		
Single-cycle	1/13 ns	=1	76.9 MHz/1
CPU	= 76.9 MHz		= 76.9 MIPS
multi-cycle	1 / 5 ns	4*50%+5*20%+4*10%+3*20%	200 MHz/4
CPU	= 200 MHz	= 4	= 50 MIPS

The following parts refer to the pipelined machine only

For the following code: Assume no forwarding.

2c (10%) Draw lines showing all the data dependencies in column 1.

and show the pipeline sequence (IF, ID, EX, M, WB) for the following code

Time		1	2	3	4	5	6	7	8	9	10	11	12
lw	\$1 , 4(\$ 2)	IF	ID	EX	M	WB							
lw	\$3, 8(\$1)		IF	ID	ID	ID	EX	M	WB				
sub	\$4, \$1 , \$2			F	F	IF	D	EX	M	WB			
add	\$5, \$4, \$2						E	ID	ID	ID	EX	M	WB

2d (2%) How many clock cycles will a load take if there is a dependency?

Latency instruction time = 5+2 stalls = 7 or Pipeline or Throughput clocks = 1+ 2 stalls

2e (2%) How many clock cycles will a load tale if there is no dependency?

Latency instruction time = 5+0 stalls = 5 or Pipeline or Throughput clocks = 1 + 0 stalls

Solution #1

Solution #2

2f (10%) Using forwarding, show the pipeline sequence (IF, ID, EX, M, WB) and draw lines showing the forwarding.

Time		1	2	3	4	5	6	7	8	9	10	11	12
lw	\$1 , 4(\$2)	IF	ID	EX	M	WB							
lw	\$3, 8(\$1)		IF	ID	ID	EX	M	WB					
sub	\$4, \$1 , \$2			IF	IF	ID	EX	M	WB				
add	\$5, <mark>\$</mark> 4, \$2					IF	ID	EX	M	WB			

2g (10%) For the following code: Assume no forwarding and no branch prediction.

Draw lines showing all the data dependencies and show the pipeline sequence (IF, ID, EX, M, WB) and draw lines showing the forwarding. **Note:** Branch decision is made in the EX stage.

Time	9	1	2	3	4	5	6	7	8	9	10	11	12
beq	\$1, \$2, loop	IF	ID	EX	M	WB							
sub	\$3, \$4, \$5				IF	ID	EX	M	WB				
			+										
add	\$4, \$4, \$5					1	JD	EX	M	WB			
	. , . , .							_					

2h (2%) What is the pipeline clock? = 1/5ns = 200 MHz (slowest pipeline stage)

2i (2%) What is the pipelined speed up from a single-cycle processor?

speedup = single-cycle clock / pipelined clock = 13 ns / 5 ns = 2.6

No branch prediction: On IF stage: the Branch IF/ID stops fetching next instruction.

Problem 3 (20%). Snow all calculations for the following questions.

Assume a load word takes 2 cycle if no dependancy and if dependant then 5 clocks Assume there is a 20% data dependency.

Assume a branch takes 2 cycle if true prediction and if false prediction then 5 clocks. Assume that 25% of the branches are mispredicted.

3a (5%) What is the average load instruction time in clocks?

 $= 80\% \times (2 \text{ clocks}) + 20\% \times (5 \text{ clocks}) = 2.6 \text{ clocks}$

3b (5% What is the average branch instruction time in clocks?

 $= 75\% \times (2 \text{ clocks}) + 25\% \times (5 \text{ clocks}) = 2.75 \text{ clocks}$

3c (10%) Now fill in the table and show calculations.

Instruction	Pipeline Cycles	Instruction Mix
add	1	50%
lw	2.6	20%
SW	1	10%
beq	2.75	20%
Clock	300 Mhz	
CPI	$= 1 \times 50\% + 2.6 \times 20\% + 1 \times 10\% + 2.75 \times 20\%$	
	= 1.67	
MIPs	300 Mhz/ 1.67 = 179.6 MIPS	