
 EECS 316

EECS 316 CAD
Computer Aided Design

LECTURE 2:
Delay models, std_ulogic and

with-select-when
Instructor: Francis G. Wolff

 wolff@eecs.cwru.edu

 Chris Papachristou
 Case Western Reserve University

 EECS 316

Review: Full Adder: Truth Table

 EECS 316

Review: Full Adder: Architecture

ENTITY full_adder IS
 PORT (x, y, z: IN std_logic;

 Sum, Carry: OUT std_logic
); END full_adder;

ARCHITECTURE full_adder_arch_1 OF full_adder IS

BEGIN

Sum <= ((x XOR y) XOR z);

Carry <= ((x AND y) OR (z AND (x AND y)));

END full_adder_arch_1;

Optional Architecture END name;

Entity Declaration

Optional Entity END name;

Architecture Declaration

 EECS 316

Review: SIGNAL: Scheduled Event

• SIGNAL
Like variables in a programming language such as C,
signals can be assigned values, e.g. 0, 1

• However, SIGNALs also have an associated time value
A signal receives a value at a specific point in time
and retains that value until it receives a new value

at a future point in time (i.e. scheduled event)

• For example
 wave <= ‘0’, ‘1’ after 10 ns, ‘0’ after 15 ns, ‘1’ after 25 ns;

• The waveform of the signal is
a sequence of values assigned to a signal over time

 EECS 316

Review: Full Adder: Architecture with Delay

ARCHITECTURE full_adder_arch_2 OF full_adder IS
SIGNAL S1, S2, S3: std_logic;

BEGIN
s1 <= (a XOR b) after 15 ns;
s2 <= (c_in AND s1) after 5 ns;
s3 <= (a AND b) after 5 ns;
Sum <= (s1 XOR c_in) after 15 ns;
Carry <= (s2 OR s3) after 5 ns;

END;

Signals (like wires)
are not PORTs they
do not have
direction
(i.e. IN, OUT)

 EECS 316

Signal order:

ARCHITECTURE full_adder_arch_3 OF full_adder IS
SIGNAL S1, S2, S3: std_logic;

BEGIN
Carry <= (s2 OR s3) after 5 ns;
Sum <= (s1 XOR c_in) after 15 ns;
s3 <= (a AND b) after 5 ns;
s2 <= (c_in AND s1) after 5 ns;
s1 <= (a XOR b) after 15 ns;

END;

ARCHITECTURE full_adder_arch_2 OF full_adder IS
SIGNAL S1, S2, S3: std_logic;

BEGIN
s1 <= (a XOR b) after 15 ns;
s2 <= (c_in AND s1) after 5 ns;
s3 <= (a AND b) after 5 ns;
Sum <= (s1 XOR c_in) after 15 ns;
Carry <= (s2 OR s3) after 5 ns;

END;

No,
this
is not
C!

Net-
lists
have
same
beha
vior
&
parall
el

Does it matter? No

 EECS 316

Delta Delay

 EECS 316

Delta Delay: Example using scheduling

 EECS 316

Inertial Delay

 EECS 316

Inverter model: lowpass filter (inertial)

Vout

R1

C2

Vin

Short pulses = High frequency
which get filtered out by cmos
capacitance

Long pulses = low frequency
which pass through

 EECS 316

Transport Delay

 EECS 316

Inertial and Transport Delay

Sig

a

b

Inertial Delay is useful for modeling logic gates

Transport Delay is useful for modeling data buses, networks

 EECS 316

Combinatorial Logic Operators

AND z <= x AND y;

NAND z <= NOT (x AND y);

NOR z <= NOT (x OR Y);

OR z <= x OR y;

NOT z <= NOT (x); z<= NOT x;

XOR z <= (x and NOT y) OR (NOT x AND y);
z <= (x AND y) NOR (x NOR y); --AOI

XNOR z <= (x and y) OR (NOT x AND NOT y);
z <= (x NAND y) NAND (x OR y); --OAI

2

2+2i

2i

2+2i

2i

10

12

#Transistors

Footnote: (i=#inputs) We are only referring to CMOS static transistor ASIC gate designs
Exotic XOR designs can be done in 6 (J. W. Wang, IEEE J. Solid State Circuits, 29, July 1994)

 EECS 316

Std_logic AND: Un-initialized value

AND 0 1 U

0 0 0 0

1 0 1 U

U 0 U U

OR 0 1 U

0 0 1 U

1 1 1 1

U U 1 U

0 AND <anything> is 0

0 NAND <anything> is 1

1 OR <anything> is 1

1 NOR <anything> is 0

NOT 0 1 U

1 0 U

 EECS 316

SR Flip-Flop (Latch)

R

S

Q

Q

 NAND
R S Qn+1

0 0 U
0 1 1
1 0 0
1 1 Qn

R

S

Q

Q

 NOR
R S Qn+1

0 0 Qn

0 1 1
1 0 0
1 1 U

Q <= R NOR NQ;
NQ <= S NOR Q;

Q <= R NAND NQ;
NQ <= S NAND Q;

 EECS 316

t 0 5ns 10ns 15ns 20ns 25ns 30ns 35ns 40ns

R 1 1 0 0 0 0 1 1 1
Q U U U U 0 0 0 0 0

Q U U U 1 1 1 1 1 1
S 1 1 1 1 1 1 1 1 1

SR Flip-Flop (Latch)

 NAND
R S Qn+1

0 0 U
0 1 1
1 0 0
1 1 Qn

R

S

Q

Q

R(t)

Q(t)

S(t)

Q(t)
Q(t + 5ns)

Q(t + 5ns)5ns

5ns

With Delay

Example: R <= ‘1’, ‘0’ after 10ns, ‘1’ after 30ns; S <= ‘1’;

 EECS 316

Std_logic AND: X Forcing Unknown Value

AND 0 X 1 U

0 0 0 0 0

X 0 X X U

1 0 X 1 U

U 0 U U U

0 AND <anything> is 0

0 NAND <anything> is 1

OR 0 X 1 U

0 0 X 1 U

X X X 1 U

1 1 1 1 1

U U U 1 U

1 OR <anything> is 0

0 NOR <anything> is 1

NOT 0 X 1 U

1 X 0 U

 EECS 316

X

The rising transition signal

L

W

H

1
> 3.85 Volts

Vcc=5.5 25°C

0
< 1.65 Volts

Unknown
2.20 Volt
gap

 EECS 316

Modeling logic gate values: std_ulogic

‘1’, -- Forcing 1

‘H’, -- Weak 1

‘L’, -- Weak 0

‘X’, -- Forcing Unknown: i.e. combining 0 and 1

TYPE std_ulogic IS (-- Unresolved LOGIC
‘Z’, -- High Impedance (Tri-State)

‘0’, -- Forcing 0

‘U’, -- Un-initialized

‘W’, -- Weak Unknown: i.e. combining H and L

‘-’, -- Don’t care
);

Example:
multiple drivers

0
1

1
1

1
 X

0

 EECS 316

Multiple output drivers: Resolution Function

U X 0 L Z W H 1 -

U U U U U U U U U U

X U X X X X X X X X

0 U X 0 0 0 0 0 X X

L U X 0 L L W W 1 X

Z U X 0 L Z W H 1 X

W U X 0 W W W W 1 X

H U X 0 W H W H 1 X

1 U X X 1 1 1 1 1 X

- U X X X X X X X X

Suppose that
the first gate outputs a 1
the second gate outputs a 0

then
the mult-driver output is X
X: forcing unknown value by
combining 1 and 0 together

 EECS 316

Multiple output drivers: Resolution Function

U X 0 L Z W H 1 -

U U U U U U U U U U

X X X X X X X X X

0 0 0 0 0 0 X X

L L L W W 1 X

Z Z W H 1 X

W W W 1 X

H H 1 X

1 1 X

- X

• Note the multi-driver resolution table is symmetrical

Observe that 0
pulls down all
weak signals to 0

H <driving> L => W

 EECS 316

Resolution Function: std_logic buffer gate

input: U 0 L W X Z H 1 -

output: U 0 0 X X X 1 1 X

 0 or L becomes 0 H or 1 becomes 1

 Transition zone becomes X

 1
 H
 W, Z
 L
0

 1
 1
 X
 0
0

std_logic

std_ulogic

 EECS 316

Resolving input: std_logic AND GATE

Process each input as an unresolved to resolved buffer.

std_ulogic

std_ulogic

For example, let’s transform z <= ‘W’ AND ‘1’;

std_logic
std_logic

std_logic

Then process the gate as a standard logic gate { 0, X, 1, U }

 z <= ‘W’ AND ‘1’; -- convert std_ulogic ‘W’ to std_logic ‘X’

W

1

 z <= ‘X’ AND ‘1’; -- now compute the std_logic AND

X

1

 z <= ‘X’;

X

 EECS 316

2-to-1 Multiplexor: with-select-when

0

1

a

b

S

Y

a

b

Y

S

Y <= (a AND NOT s)
 OR

 (b AND s);

WITH s SELECT
 Y <= a WHEN ‘0’,

 b WHEN ‘1’;

WITH s SELECT
 Y <= a WHEN ‘0’,

 b WHEN OTHERS;

or more general

structural

combinatorial logic

behavioral

Only
values
allowed

6

6

62

20 Transistors

OTHERS includes 1,U,L,W,X,H,Z

 EECS 316

4-to-1 Multiplexor: with-select-when

Y <= sa OR sb OR sc OR sd;

sa <= a AND (NOT s(1) AND NOT s(0));

sb <= b AND (NOT s(1) AND s(0));

sc <= c AND (s(1) AND NOT s(0));

sd <= d AND (s(1) AND s(0));

WITH s SELECT
 Y <= a WHEN “00”,

b WHEN “01”,
c WHEN “10”,
d WHEN OTHERS;

a

b

c

d

S

Y

00

01

10

11

As the complexity of the
combinatorial logic grows, the
SELECT statement, simplifies
logic design
but at a loss of structural
information

Structural Combinatorial logic

behavioralNote the comma after WHEN

 EECS 316

with-select-when: 2 to 4-line Decoder

WITH S SELECT
 Y <= “1000” WHEN “11”,

 “0100” WHEN “10”,
 “0010” WHEN “01”,
 “0001” WHEN OTHERS;

Y1

Y0

Y2

Y3

S0

S1

SIGNAL S: std_logic_vector(1 downto 0);

SIGNAL Y: std_logic_vector(3 downto 0);

S1 S0

Y1

Y0

Y2

Y36

8

8

10

32 Transistors

Replace this
with a NOR,
then 26 total
transistors

 EECS 316

Tri-State buffer

oe

yx

ENTITY TriStateBuffer IS
PORT(x: IN std_logic;
 y: OUT std_logic;
 oe: IN std_logic

); END;

ARCHITECTURE Buffer3 OF TriStateBuffer IS
BEGIN

WITH oe SELECT
y <= x WHEN ‘1’, -- Enabled: y <= x;

‘Z’ WHEN OTHERS; -- Disabled: output a tri-state

END;

 EECS 316

Inverted Tri-State buffer

oe

yx

ENTITY TriStateBufferNot IS
PORT(x: IN std_logic;
 y: OUT std_logic;
 oe: IN std_logic

); END;

ARCHITECTURE Buffer3 OF TriStateBufferNot IS
BEGIN

WITH oe SELECT
y <= NOT(x) WHEN ‘1’, -- Enabled: y <= Not(x);

‘Z’ WHEN OTHERS; -- Disabled

END;

 EECS 316

ROM: 4 byte Read Only Memory

Y1

Y0

Y2

Y3

A0

A1

D0

OE

4 byte by 1 bit
ROM ARRAY

 EECS 316

ROM: 4 byte Read Only Memory

ENTITY rom_4x1 IS
PORT(A: IN std_logic_vector(1 downto 0);

OE: IN std_logic; -- Tri-State Output
D: OUT std_logic

); END;

ARCHITECTURE rom_4x1_arch OF rom_4x1 IS
 SIGNAL ROMout: std_logic;
BEGIN
 BufferOut: TriStateBuffer PORT MAP(ROMout, D, OE);
 WITH A SELECT

ROMout <= ‘1’ WHEN “00”,
 ‘0’ WHEN “01”,

 ‘0’ WHEN “10”,
 ‘1’ WHEN “11”;

Component
declaration
name

Component Instance

 EECS 316

Component Declaration/Instance relationship

ARCHITECTURE rom_4x1_arch OF rom_4x1 IS

 COMPONENT TriStateBuffer
 PORT (x: IN std_logic; y: OUT std_logic, oe: IN std_logic);
 END COMPONENT;

 SIGNAL ROMout: std_logic;
BEGIN
 BufferOut: TriStateBuffer PORT MAP(ROMout, D, OE);

 WITH A SELECT

ROMout <= ‘1’ WHEN “00”,
 ‘0’ WHEN “01”,

 ‘0’ WHEN “10”,
 ‘1’ WHEN “11”;

END;

Colon (:) says make a
Component Instance

Component Declaration

Component Instance
Name: BufferOut

 EECS 316

Component Port relationship

BufferOut: TriStateBuffer PORT MAP(ROMout, D, OE);

oe

yx

COMPONENT TriStateBuffer

 PORT (x: IN std_logic; y: OUT std_logic, oe: IN std_logic);

END COMPONENT;

ENTITY rom_4x1 IS
PORT(A: IN std_logic_vector(1 downto 0);

OE: IN std_logic; -- Tri-State Output
D: OUT std_logic

); END;

OE → IN → oe → IN

D → OUT → y → OUT

 EECS 316

Assignment #2 (Part 1 of 3)

1) Assume each gate is 5 ns delay for the above circuit.

(a) Write entity-architecture for a inertial model

(b) Given the following waveform, draw, R, S, Q, NQ (inertial)
 R <= ‘1’, ‘0’ after 25 ns, ‘1’ after 30 ns, ‘1’ after 50 ns;
 S <= ‘0’, ‘1’ after 20 ns, ‘0’ after 35 ns, ‘1’ after 50 ns;

(c) Repeat (b) but now assume each gate is 20 ns delay

(d) Write entity-architecture for a transport model

(e) Given the waveform in (b) draw, R, S, Q, NQ (transport)

 EECS 316

Assignment #2 (Part 2 of 3)

X

F

Y

a

(2) Given the above two tri-state buffers connected together
(assume transport model of 5ns per gate), draw X, Y, F, a, b, G
for the following input waveforms:
 X <= ‘1’, ‘0’ after 10 ns, ‘X’ after 20 ns, ‘L’ after 30 ns, ‘1’ after 40 ns;
 Y <= ‘0’, ‘L’ after 10 ns, ‘W’ after 20 ns, ‘0’ after 30 ns, ‘Z’ after 40 ns;
 F <= ‘0’, ‘1’ after 10 ns, ‘0’ after 50 ns;

G
b

 EECS 316

Assignment #2 (Part 3 of 3)

3) Write (no programming) a entity-architecture for a 1-bit ALU.
The input will consist of x, y, Cin, f and the output will be S and
Cout. Make components for 1-bit add/sub. The input function f
(with-select) will enable the following operations:

 function f ALU bit operation
 000 S = 0; Cout = 0
 001 S = x
 010 S = y; Cout =1;
 011 S = Cin; Cout = x
 100 S = x OR y; Cout=x;
 101 S = x AND y; Cout=x;
 110 (Cout, S) = x + y + Cin; (component)
 111 (Cout, S) = full subtractor (component)

x ALU
y
Cin f

S
Cout

