EECS 31 D
Compute igh

: Francis G. Wolff
Iff@eecs.cwru.edu

ris Papachristou
Reserve University

Review: Full Adder: Truth Table

o A Full-Adderis a Combinational circiif that forms the
arithmetic sum of three input bits.

* It consists of three inputs (z, x, y) and two outputs (Carry, Sitm)

as shown.
~ o o1
1] 1| | 1
I X ¥ C 5 1 1 | 1|
0 0 o0 0 0
0 0 1 0 1 s =x By @z
0 1 1 ! 0
X y
1 0 0 0 1
1 0 1 1 0 TSN 0 0 11 1
1 1 o 1 0
1 1 1 1 1 0
1 1 (il 0 1 |
Trmth Tahle
e

=xy txzg +yz =xy+z xdy)

EKarnaungh maps

Review: Full Adder: Archite gntity Declaration
e e _ﬁﬁ

ENTITY full _adder IS
PORT (x, vy, z: IN std_logic;
Sum, Carry: OUT std_logic

); END full_adder; Optional Entity END name;
4Architecture Declaration I

ARCHITECTURE full adder arch 1 OF full adder IS
BEGIN

Sum<=((x XORy) XOR z);

Carry <= ((x AND y) OR (z AND (x AND y)));
END full _adder_arch_1;

Optional Architecture END name;

Review: SIGNAL: Scheduled Event
——— =

-%IGNAL
Like variables in a programming language such as C,
signals can be assigned values, e.g. 0, 1

e However, SIGNALSs also have an associated time value
A signal receives a value at a specific point in time
and retains that value until it receives a new value

at a future point in time (i.e. scheduled event)

e The waveform of the signal is
a sequence of values assigned to a signal over time

e For example
wave <= ‘0’, ‘1’ after 10 ns, ‘0O’ after 15 ns, ‘1’ after 25 ns;

wave

5 10 15 20 25 30 35 EECS 316

Review: Full Adder: Architecture with Delay

s S e
].'I' pd| 5 2 =11111
.J_p'/
A2]—E’l
t
1) %3 01 -
. J
¢ 1 Full Adder
ARCHITECTURE full adder arch 2 OF full_adder IS I
SIGNAL S1, S2, S3: std logic; : : :
BEGIN =09 — Signals (like wires)

END;

s1 <=(aXORb)

after 15 ns;

s2 <= (c_in AND s1) after 5 ns;

s3 <=(aANDDb)

after 5 ns;

Sum <= (s1 XOR c_in) after 15 ns;

Carry <= (s2 OR s3)

after 5 ns;

are not PORTs they
do not have
direction

(i.e. IN, OUT)

EECS 316

Signal order: Does it matter? No

e

ARCHITECTURE full adder _arch 2 OF full adder IS
SIGNAL S1, S2, S3: std _logic;

BEGIN
s1 <=(aXORDb) after 15 ns;
s2 <=(c_in AND s1) after 5 ns;
s3 <=(aANDDb) after 5 ns;
Sum <=(s1 XOR c_in) after 15 ns;
Carry<=(s20ORs3) after5 ns;

END;

ARCHITECTURE full adder arch 3 OF full adder IS
SIGNAL S1, S2, S3: std_logic;
BEGIN
Carry<=(s20ORs3) after5 ns;
Sum <=(s1 XOR c_in) after 15 ns;
s3 <=(aANDDb) after 5 ns;
s2 <=(c_in AND s1) after 5 ns;
s1 <=(aXORDb) after 15 ns;
END;

EECS 316

PRathnrind ams:

E?A S‘Sgﬁ e P
Ralnvanting D It D I i B Y AR
Electronic TR
Al WEEMEFHLHI utiuin e a e ay HAS5e EEF

U wd Gl R DT
v T

TARFA » TH-Saivies

® Default signhal assignment propagation delay if
no delay is explicitly prescribed

O VHDL signal assignments do not take place immediately

O Delta is an infinitesimal VHDL time unit so that all signal
assignments can result in signals assuming their values
at a future time

O E.g.

Output <= NOT Input:;
—-— DOutput assumes new value 1n cone delta cycole

@ Supports a model of concurrent VHDL process
execution

O Order in which processes are executed by simulator
does not affect simulation output

Copydghl ® 15551552 BRSSP EEF

PRaHhnrnl ams:

(= Delta Delay

Elactnanibc
Oraign

PR g An Example with Delta Delay

TARFE » TH-Sandes

ad
v T 00

S50 EEF

al o'l ST

® What i1s the behavior of C7

IN: 1-=0 —|>cv & >

1

Using delta delay scheduling
Time Delta Event
0 ns 1 IM: 1-=0
eval INVERTEER
= A O=*1
eval NAND, AND
3 B: 1-=>0
C: O-=1
swval AMND
! TN T B
i RN

Copyrghl B 15851508 AATEP ELF

PRathnrind ams:

RASSP :
[“&'&E?SHE:} Inertial Delay

Oraign

Aﬂ'lwmw“

TARFA » TH-Saivies

® Provides for specification propagation delay and
input pulse width, i.e. ‘inertia’ of output:

target <= [REJECT time expression] INERTIAL waverorm;

@ Inertial delay is default and REJECT is optional :

Cutput <= NOT Input AFTER 10 n=;
—— Propagation delay and minimum pulse width are 10ns

Input [>D Output Iput || | -

g0 3 10 153 2 25 3 33

Copydghl ® 15551552 BRSSP EEF

Inverter model: lowpass filter (inertial)
M ———C

Short pulses = High frequency
which get filtered out by cmos
capacitance

in

Long pulses = low frequency
which pass through

EECS 316

PRaHhnrnl ams:

(=
R Transport Delay

TARFE » TH-Sandes

S50 EEF

i y
B IB -E "'a! X B
I

LR Mo 11 b caljudun: ok
ad Gr o'ed

G4 'R TR H

v T 00

@ Transport delay must be explicitly specified
O Le. keyword “TRANSPORT” must be used

@ Signal will assume its new value after specified

delay —— TRANSPORT delayv exHample
output <= TRANSPORT NOT Input AFTER 10 ns=:
/
+"'f
Input Chriput
Input |
"-'Ir
Output

0 = 10 15 20 25 30 35

Copyrghl B 15851508 AATEP ELF

Inertial and Transport Delay
i T e 9

: ns® i # 10 ns _
: : : : sig

éa £= 51 after 10 ns;

i
#
b <= Tragsport sig after 10 ns;

ot I TET R I e It B

:
¥ ¥
now +2&0 +32 +3.3
is useful for modeling data buses, networks

Inertial Delay is useful for modeling logic gates

EECS 316

Combinatorial Logic Operators

I =
#Transistors

2 NOT z <= NOT (x); z<= NOT x;

2+2j AND z <= x AND y;

2i NAND z <= NOT (x AND y);

2+2i OR z<=xORYy;

2i NOR z <= NOT (x ORY);

10 XOR z <= (x and NOT y) OR (NOT x AND y);

z <= (x AND y) NOR (x NOR y); --AOI
12 XNOR z <= (x and y) OR (NOT x AND NOT y);

z <= (x NAND y) NAND (x OR y); --OAl

Footnote: (i=#inputs) We are only referring to CMOS static transistor ASIC gate designs
Exotic XOR designs can be done in 6 (J. W. Wang, IEEE J. Solid State Circuits, 29, July 1994)

EECS 316

Std_logic AND: Un-initialized value

> ——

NOT O 1 U
_} 1 o U
AND 0 1 U OR O 1 U
0 0 0 0 :I 0 0 1 U
1 o 1| U 4 |1 1] 1
U 0 U U U U 1 U

0 AND <anything>is 0 1 OR <anything> is 1

0 NAND <anything> is 1 1 NOR <anything> is 0

EECS 316

SR Flip-Flop (Latch)

i =——
| NOR
R— o R S|Q.. Q <=RNORNQ;
0 0]|Q, NQ <= S NOR Q;
_ 0 1|1
S Q 1 0|0
1 1 U
g Q <=R NAND NQ
R S|Q.. <= ;
7 ol U NQ <= S NAND Q;
0 1|1
1 0]0
1 1'Q,

SR Flip-Flop (Latch)

» —_——

NAND R(t)

R S1Qu, iy — S+ 5n)
0 0| U

e Sy ionsr e sm
1 1" Q, > With Delay

EECS 316

Std_logic AND: X Forcing Unknown Value

A —C

NOT 0 X 1 U
:} 1 x o U]

AND 0 X 1 U OR 0 X 1 U

o [o o o oPo |o x 1 U

X o x x ul|l x |x x 1 U

1 0 X 1 U 1 1 1 1 P

u o uv U Ullu |u uvu 1 U

0 AND <anything>is 0 1 OR <anything> is 0

0 NAND <anything> is 1 0 NOR <anything> is 1

EECS 316

The rising transition signal

e

Vcc=5.5 25°C

> 3.85 Volts

< 1.65 Volts

Unknown
2.20 Volt

gap

EECS 316

Modeling logic gate values: std_ulogic

vﬁ%
TYPE std_ulogic IS (-- Unresolved LOGIC

);

6Z’,
‘1 ”
CHQ,
‘X”
CW”
‘L9’
‘09,

‘U’,

—_———
-- High Impedance (Tri-State)

-- Forcing 1
-- Weak 1

-- Forcing Unknown: i.e. combining 0 and 1

-- Weak Unknown: e, combining Hand L

Example:
multiple drivers

-- Weak 0

-- Forcing 0

-- Un-initialized

-- Don’t care

EECS 316

Multiple output drivers: Resolution Function

» —_————
U X 0 L Z w H 1 -
U U U U U U U U U
X U X X X X X X X
0o tu—x o0 0o 0o 0 —~(X) X
L Suppose that W 1 X
i the first gate outputs a 1 H 1 X
the second gate outputs a 0
W then W 1 X
the mult-driver output is X
H : H 1 X
X: forcing unknown value by
1 combining 1 and 0 together 1 1 X
- U X X X X X X X X

EECS 316

Multiple output drivers: Resolution Function

I =
U X 0 L Z W H 1 -
U U U U U U U U U U
X X X X X X X X X
0 f) 0 0 0 0 X
L) L L W 1 X
Observe that 0
Z oulls down all Z H (1] X
W weak sighals to 0 W w 1 X
H H <driving> L =>W H 1 X
1 Hedriving>L > W] W X
- X

¢ Note the multi-driver resolution table is symmetrical

EECS 316

Resolution Function: std_logic buffer gate
———

11—

1
std_logic 1
:N Z std ulogic 0 X
0 0

W \\“A\//M

‘ 0 or L becomes 0 I Hor1 becomes 1
‘ Transition zone becomes X I

EECS 316

Resolving input: std _logic AND GATE

e

std _ulogic

std ulogic

W

Pe

1

s

—_——c
std_logic
! std_logic
std_logic

Process each input as an unresolved to resolved buffer.

Then process the gate as a standard logic gate {0, X, 1, U }

For example, let’s transform z <= ‘W’ AND ‘1’;
z <= ‘W’ AND ‘1’;
z <= ‘X" AND ‘71’;

Z <= ‘X’;

-- convert std_ulogic ‘W’ to std_logic ‘X’

-- now compute the std_logic AND

EECS 316

2-to-1 Multiplexor: with-select-when

A =
a 0
a 6 structural behavioral
Y
Y b |1
b Only
D values
| s allowed

< 20 Transistors WITH s SELECT J
combinatorial logic Y <=a WHEN ‘0’,
b WHEN ‘1’;

Y <= (a AND NOT s)

OR
(b AND s);

or more general

WITH s SELECT
Y <= a WHEN ¢0’,
OTHERS includes 1,U,L,W,X,H,Z b WHEN OTHERS;

EECS 316

4-to-1 Multiplexor: with-select-when

" Structural Combinatorial logic a____ loo
Y <= sa OR sb OR sc OR sd; b____ o1
sa <= a AND (NOT s(1) AND NOT s(0)); c 10
sb <= b AND (NOT s(1) AND s(0)); d |11
sc <= c AND (s(1) AND NOT s(0)); |
sd <= d AND (s(1) AND s(0));

S

As the complexity of the
combinatorial logic grows, the | WITH s SELECT
SELECT statement, simplifies | y <= 3 WHEN “00”

logic design b WHE
but at a loss of structural C

information d WHEN OTHERS;

Note the comma after WHEN behavioral

EECS 316

with-select-when: 2 to 4-line Decoder

N e =C
} SIGNAL S: std_logic_vector(1 downto 0);
O SIGNAL Y: std_logic_vector(3 downto 0);
%} .
— 5, — Y
__Q Y,
—,

S, S, |32 Transistors

Replace this
with a NOR,
then 26 total
transistors

WITH S SELECT
Y <= “1000” WHEN “117,
“0100” WHEN “10”,
“0010” WHEN “01”,

“0001” WHEN OTHERS;

EECS 316

Tri-State buffer

e

oe

X y

ENTITY TriStateBuffer IS
PORT(x: IN std_logic;
y: OUT std_logic;
oe: |IN std_logic

); END;

ARCHITECTURE Buffer3 OF TriStateBuffer IS
BEGIN

WITH oe SELECT
y<= x WHEN ‘1’, --Enabled: y <= x;
‘2> WHEN OTHERS; -- Disabled: output a tri-state

END; EECS 316

Inverted Tri-State buffer

e

oe

X y

ENTITY TriStateBufferNot IS
PORT(x: IN std_logic;
y: OUT std_logic;
oe: IN std_logic

); END;

ARCHITECTURE Buffer3 OF TriStateBufferNot IS
BEGIN

WITH oe SELECT
y <= NOT(x) WHEN ‘1°, -- Enabled: y <= Not(x);
‘Z’ WHEN OTHERS; -- Disabled

END; EECS 316

ROM: 4 byte Read Only Memory

e

<

A,——

4 byte by 1 bit
ROM ARRAY

>
I
!
< =<

-

EECS 316

ROM: 4 byte Read Only Memory

ENTITY rom_4x1 IS
PORT(A: IN std_logic_vector(1 downto 0);
OE: IN std_logic; -- Tri-State Output
D: OUT std_logic

); END;

ARCHITECTURE rom_4x1_arch OF rom_4x1 IS

SIGNAL ROMout: std_logic;
Component Instance

BEGIN
BufferOut: PORT MAP(ROMout, D, OE);
WITH A SELECT\
ROMout <= ‘1> WHEN “007,
‘0’ WHEN “01”, Component
‘O WHEN “10”, declaration

“1” WHEN “117;

EECS 316

Component Declaration/Instance relationship
A i

ARCHITECTURE rom_4x1_arch OF rom_4x1 IS

|
TriStateBuffer \‘;

PORT (x: IN std_logic; y: OU'F’gtd_Iogic, oe: IN std_logic);
END COMPONENT; .

Colon (:) says make a

SIGNAL ROMout: std_logic; .-
Component Instance

BEGIN
BufferOut: " PORT MAP(ROMout, D, OE);

Component Instance
Name: BufferOut

WITH A SELECT
ROMout <= ‘1’ WHEN “007”,

‘0O’ WHEN “017,
‘0’ WHEN “107,
“1” WHEN “117;

Component Port relationship
& —oe ————=

OE - IN - oe - IN I
y ‘DHOUT Y HOUTI

PORT (x: IN std_logic; y OUT std_logic, oe: IN std_logic);
END COMPONENT;

X

COMPONENT TriStateBu’ﬁer

...
by
by
b,y
by
b,y
“ay
“a,
LI
N,y

BufferOut: PORT MAP(ROMout, D, OE);

ENTITY rom_4x1 IS

PORT(A: INs vector(1 downto 0);

OE: std Jo‘glc -- Tri-State Output
D: OUT std _logic

); END;

Assignment #2 (Part 1 of 3)

e

o

(Feset)] R @_

(Set) Sq>>_

Sk Latch

2 (nog)

1) Assume each gate is 5 ns delay for the above circuit.
(a) Write entity-architecture for a inertial model

(b) Given the following waveform, draw, R, S, Q, NQ (inertial)
R <= ‘1’ ‘O’ after 25 ns, ‘1’ after 30 ns, ‘1’ after 50 ns;
S <=0, ‘1’ after 20 ns, ‘0’ after 35 ns, ‘1’ after 50 ns;

(c) Repeat (b) but now assume each gate is 20 ns delay
(d) Write entity-architecture for a transport model

(e) Given the waveform in (b) draw, R, S, Q, NQ (transport) cecss

Assignment #2 (Part 2 of 3)

e

a

X

(2) Given the above two tri-state buffers connected together
(assume transport model of 5ns per gate), draw X, Y, F, a, b, G
for the following input waveforms:

X <=1, ‘0O’ after 10 ns, ‘X’ after 20 ns, ‘L’ after 30 ns, ‘1’ after 40 ns;
Y <=0, ‘'L’ after 10 ns, ‘W’ after 20 ns, ‘0’ after 30 ns, ‘Z’ after 40 ns;
F <=0, ‘1’ after 10 ns, ‘0’ after 50 ns;

EECS 316

Assignment #2 (Part 3 of 3)

7 ————)
3) Write (no programming) a entity-architecture for a 1-bit ALU.
The input will consist of x, y, Cin, f and the output will be S and
Cout. Make components for 1-bit add/sub. The input function f
(with-select) will enable the following operations:

function f ALU bit operation

000 S=0; Cout=0

001 S=x

010 S =y; Cout =1;

011 S =Cin; Cout =x

100 S = x ORy; Cout=x;

101 S = x AND y; Cout=x;

110 (Cout,S)=x+y+Cin; (component)

111 (Cout, S) = full subtractor (component)

EECS 316

