
Application
Specific IC
(ASIC)

Application
Note

Rev. 1205A–12/99

Design
Guidelines
ASIC Design Guidelines

Introduction
The Atmel ASIC Design Guidelines constitute a general set of recommendations
intended for use by designers when preparing circuits for fabrication by Atmel. The
guidelines are independent of any particular CAD tool or silicon process. They are
applicable to Gate Arrays, Cell-Based ASICs (CBICs) and full-custom designs.
Although they do not give specific coding recommendations, they apply equally to
designs captured in Verilog or VHDL as to designs captured as schematics.

These guidelines do not cover general principles of ASIC design; rather they highlight
specific design practices which are regarded as unsafe, and which can lead to
devices which are difficult to test, and whose correct operation cannot be guaranteed
under all circumstances. For each unsafe, and therefore non-recommended design
practice, an alternative safe, and therefore recommended practice is proposed.

The current paradigm shift towards system level integration (SLI), incorporating multi-
ple complex functional blocks and a variety of memories on a single circuit, gives rise
to a new set of design requirements at integration level. These design guidelines do
not fully address these issues yet. The recommendations are principally aimed at the
design of the blocks and memory interfaces which are to be integrated into the sys-
tem-on-chip. However, the guidelines given here are fully consistent with the require-
ments of system level integration. Respect for these guidelines will significantly ease
the integration effort, and ensure that the individual blocks are easily reusable in other
systems.

These design guidelines have been drawn up in the light of experience with large
numbers of ASIC designs over more than a decade.

The Atmel ASIC Design Guidelines have a particular significance during the signoff of
each design prior to submission for fabrication:

Atmel customers must sign off a design to confirm that it complies with all the recom-
mendations in the Atmel ASIC Design Guidelines. For each case of non-compliance,
the case must be discussed with the ASIC Support Center, and if necessary a formal
Authorization must be obtained.

Synchronous Circuits
Experience has shown that the safest methodology for
time-domain control of an ASIC is synchronous design.

A synchronous circuit is one in which:

• all data storage elements are clocked, and in normal
operation change state only in response to the clock
signal

• the same active edge of a single clock signal is applied
at precisely the same point in time at every clocked
cell in the device.

Examples of circuit elements which contradict these princi-
ples are given below, and methods of achieving synchro-
nous design are given in the four sections which follow.

Non-recommended Circuits
Circuits which violate the principles of synchronous design
include the following elements:

Flip-flop driving clock input of another flip-flop
The clock input of the second flip-flop is skewed by the
clock-to-q delay of the first flip-flop, and is not activated on
every clock edge. See Figure 1.

Figure 1. Flip-flop driving clock input of another flip-flop

An example of a circuit containing this element is a ripple
counter.

Gated clock line
Gating in a clock line (Figure 2) causes clock skew and can
introduce spikes which trigger the flip-flop. This is particu-
larly the case when there is a multiplexer in the clock line.

Figure 2. Gated clock line

Double-edged clocking
The two flip-flops are clocked on opposite edges of the
clock signal (Figure 3). This makes synchronous resetting
and test methodologies such as scan-path insertion diffi-
cult, and causes difficulties in determining critical signal
paths.

Figure 3. Double-edged clocking

D Q

CK QB CK QB

D Q

D Q

CK QB

CTRL

CLK

D Q

CK QB

D Q

CK QB

CLK
ASIC2

ASIC
Flip-flop driving asynchronous reset of another flip-
flop.
In Figure 4, the second flip-flop can change state at a time
other than the active clock edge, violating the principle of
synchronous design. In addition, this circuit contains a
potential race condition between the clock and reset of the
second flip-flop.

Figure 4. Flip-flop driving asynchronous reset of another
flip-flop

An example of a circuit containing this element is an asyn-
chronously reset counter.

Recommended Circuits
Methods of achieving the requirements of synchronous
design, and avoiding the non-recommended situations
described above are dealt with in subsequent sections, as
follows:

• Synchronous clocking by means of clock buffering: See
“Clock Buffering” on page 4.

• Flip-flop driving clock signal of another flip-flop: See
“Gated Clocks” on page 10.

• Gated clocks: See “Gated Clocks” on page 10.

• Double-edged clocking: See “Double-edged Clocking” on
page 11.

• System clock generation: See “Clock Generation and
Overall Circuit Control” on page 12.

• Asynchronous resets: See “Asynchronous Resets” on
page 13.

D Q

CK QB

D Q

CK QB

R

CLK
3

Clock Buffering
To achieve the requirement of a simultaneous application
of a single clock signal at all storage elements in a design,
and avoid problems due to fanout, a clock buffering
scheme needs to be implemented consistently throughout
a circuit. This is often done automatically as part of place-
ment and routing; if not, the principles described in this sec-
tion should be followed.

Non-recommended Circuits
Circuits which violate the principles of consistent clock buff-
ering include the following elements:

Unequal depth of clock buffering
The depth of clock buffering differs between different clock
application points, causing clock skew. See Figure 5.

Figure 5. Unequal depth of clock buffering

Clock Source
Clock Application
Points
ASIC4

ASIC
Unbalanced fanout on clock buffers
As shown in Figure 6, the difference between the fanouts at
the two intermediate buffers gives rise to different load-
dependent delays, causing clock skew.

Excessive clock fanout
Excessive clock fanout leads to slow clock edges, which
can cause a number of problems, including an increased
risk of metastability in flip-flops which capture external
asynchronous signals.

Figure 6. Unbalanced fanout on clock buffers

Clock Source
Clock Application
Points
5

Recommended Circuits
The recommended clock buffering scheme is balanced tree
buffering, which must satisfy the following conditions:

1. The same depth of buffering to all clocked cells. (A
suggestion is to use the naming convention: ck0 at
application point, then ck1, ck2, ... ckn, and join
equivalent levels up the circuit hierarchy. Note that n
must be even to retain clock polarity.) See Figure 7.

2. The same fanout on all buffers. This must be
checked after placement and routing, to ensure that
tracking capacitances do not unbalance the fanout.

3. Lightly loaded buffers to keep clock edges sharp
(max 50% of max relative fanout). An alternative is
to use a combination of geometric and tree buffer-
ing, as illustrated in Figure 8.

Balanced clock tree buffering

Figure 7. Balanced clock tree buffering

Clock Source Clock Application
Points

CK0

CK0

CK0

CK0

CK1

CK0

CK0

CK0

CK0

CK1

CK0

CK0

CK0

CK0

CK1

CK0

CK0

CK0

CK0

CK1

CK4 CK3 CK2
ASIC6

ASIC
Combined geometric/tree buffering
By using an intermediate buffer of a suitable drive strength
at each clock fanout point, the relative fanout at each buffer
is reduced, and clock edges remain sharp.

Figure 8. Combined geometric/tree buffering

Clock Source Clock Application
Points

BUF2

BUF2

BUF2

BUF2

BUF2

BUF2

BUF2

BUF2

BUF2

BUF2

BUF2

BUF2

BUF2

BUF2

BUF2

BUF2

BUF2

BUF2

BUF2

BUF2

BUF2
7

Clock Bar Cells
The use of clock bar cells for clock distribution from within a
standard cell area is recommended (during placement and
routing, if they are available), as shown in Figure 9. A sin-
gle Clock bar cell, positioned correctly in the centre of the
standard cell area, can provide a balanced clock net distri-
bution. This runs a vertical clock trunk through the middle
of the cell area, allowing clock net branches to feed cells on
either side of the trunk. This method reduces the risk of
clock skew by halving the effective clock path length along

a row of cells, compared with a clock supplied from one
end of the cell row. It also guides the router to prevent a
long clock path being threaded through the standard cells,
and prevents clock net looping.

It is recommended to use only one clock bar cell per stan-
dard cell area (otherwise clock looping may occur). By
using clock bar cells, there will be a balanced clock net dis-
tribution within each standard cell area.

Balanced clock routing using clock bar cells

Figure 9. Balanced clock routing using clock bar cells

CK0

CK0

CK0

From balanced clock tree

Standard cell row Clock bar cell

Clock routing to
individual cells

Std. Cell Area 1 Std. Cell Area 2

Std. Cell Area 3
ASIC8

ASIC
Clock Guidance
The use of clock guidance is recommended if available,
before starting place and route. A central clock trunk should
be run between the standard cell areas with branches feed-
ing off either side into the standard cell areas themselves,
as shown in Figure 10. A bad example of Clock guidance is
given in Figure 11, highlighting the risk of clock skew.

Good example of clock guidance

Figure 10. Good clock guidance for routing

It is important to have an even number of rows (in the stan-
dard cell areas), because an odd number of rows can force
the place and route software to create loops on the clock
net.

Bad example of clock guidance

Figure 11. Bad clock guidance for routing

Clock Compilers
If Clock compilers are available, they help to maintain a a
balanced clock network, but should be used with care. The
clock compiler automatically adjusts the clock buffering to
make the equivalent delays for each cell area the same as
the longest delay. This means additional buffer cells may
be added both outside and inside the standard cell areas,
and the cell areas themselves may be split.

Clock Driver

Std Cell Area 1

Std Cell Area 2

Std Cell Area 3 Std Cell Area 4

Clock Driver

Std Cell Area 1
Std Cell Area 2

Std Cell Area 3 Std Cell Area 4
9

Gated Clocks
A seemingly obvious way of controlling the operation of a
flip-flop is to gate the clock signal with a control signal, or to
multiplex two alternative clocks into its clock input. This
practice is dangerous on two counts:

• A glitch on the gate output can cause a clock edge.

• Gating in the clock line introduces clock skew.

Non-recommended Circuits
A particularly unsafe circuit element is shown in Figure
12.

Multiplexer on clock line

Figure 12. Multiplexer on clock line

Toggling the multiplexer control signal inevitably causes a
glitch on the ck input to the flip-flop, which may cause it to
capture invalid data.

Recommended Circuits
Two circuit elements which are recommended for use in
synchronous designs are illustrated here. They are the
enabled (E-type) flip-flop and the toggle (T-type) flip-flop.
They remove the need for gated clocks, or for using the
output from one flip-flop as the input to another.

Enabled (E-type) flip-flop
The enable signal (the multiplexer select line) controls the
input of data to the flip-flop. If enable is low, the existing
value of q is re-input at the next clock cycle. If enable is
high, a new data value is clocked in. See Figure 13.

Note: A version of the E-type flip-flop can be constructed with a
synchronous reset. A recommended way of constructing

an E-type flip-flop is using AOI logic. See “Design for
Speed” on page 31.

Figure 13. E-type flip-flop

Toggle (T-type) flip-flop
The toggle flip-flop is the basic element in synchronous
counters. The toggle signal (the multiplexer select line)
controls state of the flip-flop. If toggle is low, the flip-flop
retains its existing value at the next clock edge; if toggle is
high, it takes the opposite value. See Figure 14.

Note: A version of the T-type flip-flop can be constructed with a
synchronous reset. A recommended way of constructing
a T-type flip-flop is using AOI logic. See “Design for
Speed” on page 31.

Figure 14. T-type flip-flop

D Q

CK QB

R

S

A

B

MUX

CTRL

CKA

CKB

D Q

CK QB

R

S

A

B

MUX

��

�

D Q

CK QB

R

S

A

B

MUX

T

ASIC10

ASIC
Double-edged Clocking
In an attempt to increase data throughput rates, use is
sometimes made of both the rising and the falling clock
edge for clocked elements. This practice, however, violates
the principles of synchronous design given in “Synchro-
nous Circuits” on page 2, and causes a number of prob-
lems, in particular:

• An asymmetrical clock duty cycle can cause setup and
hold violations.

• It is difficult to determine critical signal paths.

• Test methodologies such as scan-path insertion are
difficult, as they rely on all flip-flops being activated on
the same clock edge. If scan insertion is required in a
circuit with double-edged clocking, multiplexers must be
inserted in the clock lines to change to single-edged

clocking in test mode. See, however, the warning in
“Multiplexer on clock line” on page 10.

The recommended alternative is to use a single-edged
clocking scheme with a higher clock frequency.

A general principle of synchronous circuit design is that the
minimum time resolution available within the circuit is the
duration of one complete clock cycle.

Non-recommended Circuit
Pipelined logic with double-edged clocking
In a circuit as shown in Figure 15, an asymmetrical clock
duty cycle could cause setup and hold time violations, and
a scan-path cannot easily be threaded through the flip-
flops.

Figure 15. Pipelined logic with double-edged clocking

Recommended Circuit
Pipelined logic with single-edged clocking
The equivalent synchronous circuit (Figure 16) requires a
clock frequency of double the previous version.

It is also recommended that enabled logic is used where
required. See “Gated Clocks” on page 10.

Figure 16. Pipelined logic with single-edged clocking

D Q

CK QB

D Q

CK QB

D Q

CK QB

CLK

Combina-
tional
Logic

Combina-
tional
Logic

D Q

CK QB

D Q

CK QB

D Q

CK QB

CLK

Combina-
tional
Logic

Combina-
tional
Logic

(Double Frequency)
11

Clock Generation and Overall Circuit Control
If clocks of different speeds are required by different
blocks, or the internal clock is required at a speed faster or
slower than the externally available clock, it is recom-
mended that a single clock generation block is constructed
at the top level of a circuit. This produces the internal

clocks required by all the functional blocks in the circuit.
See Figure 17.

Communication between the internal blocks is achieved by
the same principles as for asynchronous external inputs.
See “Asynchronous Inputs” on page 17.

Recommended Circuit

Figure 17. Clock generation module at circuit top level

Generating higher- or lower-speed internal
clocks
If the externally available clock signal is of a higher fre-
quency than that required for an internal clock, a synchro-
nous binary counter (made from T-type flip-flops) is
recommended to perform the required clock division.

Latching of data conditionally, or at a lower frequency than
this internal clock is achieved by the use of individual E-
type flip-flops for data storage.

Alternatively, a PLL can be used to produce a higher-speed
internal clock than the external reference clock.

Clock
Generation

Module

�����	

�����	�

�����	�

�������	������

���

����

����

���

��������
���������

�����
ASIC12

ASIC
Asynchronous Resets
The general recommendations for dealing with resets
within an ASIC are as follows:

1. The circuit must be brought to a known state, both
within test and in operation, within a stated and
agreed number of clock cycles. The known state is
generally achieved by means of a reset mechanism.

2. If an asynchronous reset is required, use a single
global asynchronous reset driven by an external
input. A tree buffering scheme similar to that for
clock distribution may be required to ensure a sharp
edge on the reset signal. The benefit of a reset of
this nature is that it places the entire circuit in a
known state in response to a change on a single
input signal, with no clock cycles required for the
known state to propagate.

3. If a power-on reset (POR) pad is used, the circuit
must contain another global reset for test purposes.

4. If a local reset is required, use a synchronous reset.

Non-recommended Circuit
A local asynchronous reset such as on a counter causes a
change of state in a storage element which is not triggered
by the active clock edge, and therefore violates the princi-
ples of synchronous design given in “Synchronous Circuits”
on page 2.

Local asynchronous reset of a flip-flop
In Figure 18, the local asynchronous reset causes a
change of state on the second flip-flop which is not syn-
chronized with the active clock edge.

Figure 18. Flip-flop driving asynchronous reset of another flip-flop

D Q

CK QB

R

D Q

CK QB

CLK

Combina-
tional
Logic

Q

R

13

Recommended Circuits
The circuits given below overcome the problems discussed
in the previous section.

A general recommendation is, if necessary, to organize
resets into a hierarchy, from global (which may be asyn-
chronous) to local (which must be synchronous).

Global asynchronous reset of all flip-flops
In Figure 19, a single external reset signal (rext) is con-
nected to all flip-flops. The buffering which may be required
is not shown.

Figure 19. Global asynchronous reset of all flip-flops

Local synchronous reset of a flip-flop
In Figure 20, the (active low) reset signal (r) is gated with
the d-input of the second flip-flop, making it synchronous.

The second flip-flop changes state only on an active clock
edge.

Figure 20. Flip-flop driving a synchronous reset of another flip-flop

D Q

CK QB

R

D Q

CK QB

CLK

R

D Q

CK QB

R

Q Q

CK QB

R

REXT

D Q

CK QB

D Q

CK QB

CLK

Combina-
tional
Logic

Q

R

ASIC14

ASIC
Shift Registers
Shift registers are particularly intolerant of clock skew. A
problem which occurs in their design is that long shift regis-
ters may require internal clock buffering. If not properly
designed, this buffering can cause clock skew within the
shift register, and interfacing problems between the shift
register and the rest of the circuit.

Non-recommended Circuits
Not recommended is a chain of clock buffers within shift
register, in either the forward or the reverse direction.
These cases are illustrated below.

Shift register with forward chain of clock buffers
The problem with a forward chain of clock buffers (Figure
21) is that internal clock skew can cause data fallthrough
(where one stage of the shift register is skipped).

Figure 21. Shift register with forward chain of clock buffers.

Shift register with reverse chain of clock buffers
As shown in Figure 22 below, the problem with a reverse
chain of clock buffers is the timing interface between the

first D-type and the input data received from the rest of the
circuit.

Figure 22. Shift register with reverse chain of clock buffers.

D Q

CK QB

D Q

CK QB

D Q

CK QB

D Q

CK QB

D Q

CK QB

D Q

CK QB

D Q

CK QB

D Q

CK QB

QD

QB

CLK

D Q

CK QB

D Q

CK QB

D Q

CK QB

D Q

CK QB

D Q

CK QB

Q Q

CK QB

D Q

CK QB

D Q

CK QB

QD

QB

CLK
15

Recommended Circuits
There are two recommended ways of constructing the
clock buffering scheme within a shift register:

1. Use balanced clock tree buffering as in the rest of
the circuit. See “Clock Buffering” on page 4 and Fig-
ure 23 below. As an additional safety feature, buffer-
ing can be introduced in the data lines between
each flip-flop.

2. Use a FIFO.

Shift register with balanced clock tree buffering
As shown in Figure 23, the clock tree within the shift regis-
ter must be balanced (in terms of relative fanout) with the
same levels of clock tree in other parts of the circuit. Note
the naming convention for clock signals which facilitates
this.

Figure 23. Shift register with balanced tree of clock buffers.

D Q

CK QB

D Q

CK QB

D Q

CK QB

D Q

CK QB

D Q

CK QB

D Q

CK QB

D Q

CK QB

D Q

CK QB

QD

QB

CK2
CK1

CK0CK0
ASIC16

ASIC
Asynchronous Inputs
A problem arises at the interface between a synchronous
circuit and an external asynchronous input. At the flip-flop
which captures the asynchronous input, there is a probabil-
ity of metastability occurring. This section suggests some
circuits which capture an external asynchronous input with
a minimal risk of metastability.

Note: For large designs, inter-block communication is similar to
external asynchronous interfacing.

Non-recommended Circuits
Not recommended is any circuit using a complicated feed-
back loop to capture an asynchronous input. The function
of such circuits is obscure, and they run the risk of creating
more problems than they solve. They are also very sensi-
tive to noise, and their function can be altered by place-
ment and routing delays.

Recommended Circuits
There are two recommended approaches to the problem of
capturing an asynchronous input signal:

1. Two (or more) D-type registers in series to reduce
the probability of metastability (Figure 24).

2. Use an asynchronous handshake circuit (Figure
25).

In all cases, the asynchronous event is a rising edge on the
d (external) input to the first flip-flop. The pulse width of this
signal is indeterminate, but is at least one clock cycle. The
asynchronous event may occur simultaneously with a rising
clock edge.

A general point which applies to all situations where meta-
stability is possible is as follows:

• The rise and fall times of both the clock and data signals
are significant: fast edges reduce the probability of
metastability.

Two D-type flip-flops in series to capture an
asynchronous input
If the first flip-flop goes into a metastable state, the proba-
bility that it will still be in that state at the next rising clock
edge is low. Should this, however, occur, the metastable
state is propagated to the d (internal) output and into the
rest of the circuit. The probability of this situation is reduced
by additional flip-flops in series.

Figure 24. Two D-type flip-flops in series to capture an asynchronous input

The common characteristics of circuits of this nature are as
follows:

• In order for the d (external) rising edge to cause a rising
edge on the d (internal) output, there must be at least
one clock cycle between asynchronous inputs during
which d (external) is low. This reduces the maximum
frequency for the recognition of external events to half
that of the internal clock frequency.

• If the flip-flop which receives the asynchronous d
(external) rising edge settles (after a period of
metastability) into the state with q = 0, the external input
is lost unless it persists beyond the next rising clock
edge.

• Metastability can be caused by a rising or a falling edge
on the d (external) input.

D Q

CK QB

D Q

CK QB

CLK (internal)

D (external) D (internal)
17

Asynchronous handshake circuit
A circuit of the type shown in Figure 25 can be used to
detect an asynchronous event: a rising edge on d (exter-
nal). These events must occur at longer time intervals than
two clock cycles.

The external event (d) drives the clock input of the first flip-
flop. This is the only flip-flop in the circuit which has a clock
input not driven by the system clock (clk). The d-input to
this flip-flop is tied to logic 1. It has an asynchronous input
driven from the system reset (r) and from the qb outputs of
the second and third flip-flops.

Figure 25. Asynchronous handshake circuit

In reset mode (r = 0), the first flip-flop is reset asynchro-
nously. This state takes two clock cycles to propagate to
the d (internal) signal. In active mode (r = 1), a rising edge
on d (external) immediately drives the q-output from the
first flip-flop high. After one rising clock edge, this propa-
gates to the q-output from the second flip-flop, and after a
second clock edge, to the d (internal) output from the third

flip-flop. At this time, the qb outputs from the second and
third flip-flops are both low. This logic level propagates
through the OR and the AND gates in the feedback loop,
forcing a reset on the first flip-flop, which is now ready to
receive another rising edge on the d (external) input. The
circuit function is illustrated in Figure 26.

Figure 26. Operation of asynchronous handshake circuit

The d (internal) signal can be used as an acknowledge sig-
nal to the external system which is supplying the d (exter-
nal) inputs.

The risk of metastability is at the second flip-flop: caused
by simultaneous rising edges on the (asynchronous) q-out-

put from the first flip-flop and the system clock. If this
occurs, there are three possibilities:

• The second flip-flop settles into a q = 1 state before the
next rising clock edge. This is then clocked by the third
flip-flop, and the circuit functions normally.

D Q

CK QB

D Q

CK QB

CLK (internal)

D (external)

D (internal)D Q

CK QB

R

R

1

Async
Reset

Event
1

Event
2

Event
3

Event
4

Event
1

Event
2

R

D
(external)

CLK
(internal)

Async
Reset

D
(internal)

Event 3 too
close to Event 2

Event 4 during
Reset state
ASIC18

ASIC
• The second flip-flop settles into a q = 0 state before the
next rising clock edge. This causes no change to the
third flip-flop, and the feedback loop to the first flip-flop is
unaffected. Therefore the first flip-flop retains its q = 1
value to be clocked by the second flip-flop on the next
rising clock edge. The effect of this is to delay the
recognition of the asynchronous event by one clock
cycle.

• The metastable state persists until the next rising clock
edge. In this case there is a possibility of the third flip-flop
entering a metastable state as well. However, the
probability of a metastable state persisting for an entire
clock cycle, and forcing the third flip-flop into a similar

state, is extremely low. This risk can be further reduced
by inserting additional flip-flops, at the expense of an
additional clock cycle as the minimum delay between
recognized inputs.

Note: Metastability can only be caused by a rising edge of the
d (external) input, whereas in the previous two circuits it
can be caused by either edge. The only restriction on
pulse width for the asynchronous handshake circuit is
the minimum pulse width of the first flip-flop.

This circuit will enter an unknown state if it receives simul-
taneous rising edges on the d (external) and reset (r) sig-
nals.
19

Delay Lines and Monostables
There is often an apparent requirement to create a short
pulse within a circuit, of duration less than a clock cycle.
This generally requires the use of a delay line within a
monostable element, as shown in Figure 29 below. A multi-
vibrator circuit (Figure 31) is based on a similar principle.
More generally, asynchronous circuits often rely on delay
lines for their correct operation, for example in an attempt
to overcome race conditions.

The practice of delay-line dependent circuits is not recom-
mended, as the actual timing of the delay line is difficult to
predict, and is highly sensitive to temperature and process
spread.

In particular, due to simulation model constraints it is not
permitted to short two inputs of a logic gate to the same
source signal (Figure 27). The problem is that the gate
delays are characterized with one signal changing. For a
NAND3 driven to a one (Figure 28), if two signals change
simultaneously there are two transistors pulling the output
high, instead of one. This will reduce the delay time by
about 50% compared to the simulation model.

Non-recommended Circuits
In general, any circuit which relies on delays for its opera-
tion is not recommended. All gates in series which are not
used for buffering must be considered as delay lines. Five
specific examples are given below:

NAND2 gate used as delay element

Figure 27. NAND2 gate used as a delay element

NAND3 gate with two inputs connected together

Figure 28. NAND3 gate with two inputs connected
together

Monostable pulse generator

Figure 29. Monostable pulse generator

Pulse generator using a flip-flop

Figure 30. Pulse generator using a flip-flop

Multivibrator

Figure 31. Multivibrator

Care must be taken not to create inadvertently an equiva-
lent circuit to this one, for example, in the (synchronous)
reset loop of a counter.

B�

c�

�

Delay Line

Trigger
Pulse

D Q

CK QB

CLK

Delay Line

Pulse1

R

Delay Line

Trigger
Oscillating
Signal
ASIC20

ASIC
Recommended Circuit
If at all possible, delay-line dependent circuits should be
avoided completely. The safe solution to the problem is as
follows:

1. Use a higher clock speed. The best time resolution
available in a circuit is the width of one clock cycle.

2. Use a synchronous pulse generator, as illustrated in
Figure 32 below.

Synchronous pulse generator

Figure 32. Synchronous pulse generator

Authorization
Delay-dependent circuitry is only accepted by Atmel when
it is accompanied by post-layout (H)Spice simulation
results of the relevant circuit elements.

Pulse

D Q

CK QB

D Q

CK QB

CLK

Trigger
21

Bistable Elements
Data storage elements should not be created by cross-cou-
pling NAND or NOR gates to form bistable elements. There
are a number of problems associated with bistable ele-
ments of this nature, including asynchronous operation,
unknown output states for certain input combinations, sen-
sitivity to input spikes, and the lack of timing constraint
checking in simulation.

Non-recommended Circuits
Non-recommended circuits include cross-coupled NAND or
NOR gates and RS flip-flops. These are illustrated in Figure
33, Figure 34 and Figure 35 below.

It is important to avoid the inadvertent creation of cross-
coupled NAND/NOR gates by means of feedback loops
within combination logic.

Cross-coupled NAND gates

Figure 33. Cross-coupled NAND gates forming bistable
storage element

Cross-coupled NOR gates

Figure 34. Cross-coupled NOR gates forming bistable
storage element

RS flip-flop

Figure 35. Asynchronous RS flip-flop

Recommended Circuits
The recommended methods of overcoming the problems
listed in the previous section are as follows:

1. Use D-types with gated set/reset as required.

2. Use a latch configured as RS flip-flop. See the
example circuit in Figure 36 below.

3. Avoid R-S races in the control of RS flip-flops.

Latch configured as RS flip-flop

Figure 36. Latch configured as RS flip-flop

S
(Active High)

R
(Active High)

Q

QB

R
(Active Low)

S
(Active Low)

Q

QB

D Q

CK QB

R

S

S
(Active Low)

0

0

R
(Active Low)

Q

QB

D Q

LD QB

S

S
(Active Low)

0

R
(Active High)

Q

QB
ASIC22

ASIC
RAMs/ROMs in Synchronous Circuits
The problem of interfacing RAMs and dual-port RAMs into
synchronous circuits is that they are double-edge triggered:
the address is latched on the opposite clock edge to the
data. This scheme is shown in relation to the ME and
WEbar signals used by RAM and dual-port RAM in Figure
37 below. The ROM ME signal also latches the address on
the rising edge.

Figure 37. ME and WEbar (RAM/DPRAM) timing scheme

Recommended Circuits
ME and WEBar Generation
To achieve synchronicity with the rest of the circuit, connect
the RAM or dual-port RAM ME signal to an inverted system
clock. One method of generating the WEbar signal is to use
a D-type flip flop, with the inverted ME signal driving the
clock, and an active-high external write request (wext) driv-
ing the d-input. The Webar signal is taken from the qb out-
put. This produces the required delay of WEbar with
respect to ME. This configuration is shown in Figure 38,
and the resulting waveforms for a write cycle in Figure 39.

Figure 38. Interfacing RAM/DPRAM into a synchronous circuit

Latch Address Latch Data

Addr
Setup

Addr
Hold

Data
Setup

Data
Hold

ME
(RAM/DPRAM)

WEbar
(Write)

WEbar
(Read)

D Q

CK QB

D Q

CK QB

/

/

/ /

ADD ADD

WEXT
WEB

ME

DIN DI DO DOUT

CLK

RAM
23

Figure 39. ME and WEbar timing scheme using flip-flop
for WEbar generation

A consequence is that the clock duty cycle needs to be
checked: the shorter phase needs to be longer than the
setup and hold times and maximum propagation delay in
the RAM, ROM, dual-port RAM and interfacing circuitry.

Avoiding Floating Outputs during Write Phase
During a write cycle, the output of a RAM/DPRAM (with
tristate outputs) is floating. The propagation of this state
can be avoided by means of the circuitry shown in Figure
40.

Figure 40. Avoiding floating RAM/DPRAM output propagation

Data and
Address Ready

Latch Address Latch Data

Write Request

CLK

ME

WEXT

WEBAR

/

/

/

ADD

WEB

ME

DI DO

RAM

ADD

WEXT

DIN

ME

/ DOUT
ASIC24

ASIC
Internal Tristates
Internal tristates for data bus access within a circuit must
be used with care, and should be avoided if possible.
Potential problems are an undriven bus (particularly at ini-
tialization time) and conflicting bus drivers. An undriven bus
floats to an intermediate state, causing high static currents.

Non-recommended Circuit
The general configuration of a circuit which is susceptible
to problems of tristate control is shown in Figure 41 below.

Local control of tristate enables

Figure 41. Tristate bus with no central control of tristate
enables. Do not use the Hzpull cell as a memory device.

The tristate enables are controlled locally, with no means of
ensuring that there is no conflict (two driving simulta-
neously) or no undriven state, with no driver switched on.
The Hzpull part retains the existing state of the bus, but it
cannot initialize a tristated bus and creates asynchronous
storage.

Recommended Circuits
1. Decode tristate control through a central control

decoder. It is recommended that the operation of
this decoder is documented by means of a truth
table or Karnaugh map.

2. Provide one driver which is activated on non-con-
trolled states. In particular, ensure that this driver is
active during the reset state of the circuit.

3. Do not rely on Hzpull as a memory device. Its func-
tion is to prevent static dissipation, and it has a poor
timing check.

4. Eliminate the tristates altogether by using multi-
plexed data bus lines. See “Multiplexers vs tristates”
on page 26.

These three points are illustrated in Figure 42 below.

Central control of tristate enables

Figure 42. Tristate bus with central control of tristate enables and additional driver activated on non-controlled states

Note: The Hzpull part is not strictly necessary in the above
schematic. It is included for additional security during
control transitions.

E0

E1

E2

E3

D0

D1

D2

D3

No central
control of
tristate
enables

Data Bus
(1 bit)

HZPULL

E0

E1

E2

E3

D0

D1

D2

D3

Data Bus
(1 bit)

HZPULL

0

R

CTRL /

Control
Decoder

(Active Low)

Tristate Driver
Activated on

Non-controlled
States
25

Multiplexers vs tristates
5. Preferably, multiplex data lines instead of using

tristate-driven buses. The factors to be taken into
account are as follows:

Tristates (disadvantages):

• large area

• limited buffering

• large routing load, consequently slow

Multiplexers (advantages):

• small area

• efficient routing

Note: The control decoding is the same for a tristate-driven bus
as for a multiplexed set of data lines.
ASIC26

ASIC
Paralleling Signals
For various reasons it sometimes appears necessary to
include a wired OR or equivalent construction in a circuit, in
order to provide parallel data signals. This practice is not
recommended. The use of wired OR parts should be
avoided wherever possible.

Non-recommended Circuit
Any circuit element which makes implicit or explicit use of
the wired OR part is not recommended. An example is
shown in Figure 43 below.

Figure 43. Wired OR part used to create higher fanout

The function of this circuit may not be modeled properly,
and there are placement and routing hazards.

Recommended Circuit
Use buffers of the appropriate strength and logic combina-
tions which avoid the use of wired OR gates. The previous
circuit can be replaced by the following equivalent:

Figure 44. Higher-fanout buffer replacing wired OR part

X Y

INV3

INV3

X Y

INV6
27

Fanout
The relative fanout on any net in a circuit is the ratio of the
total load (due to driven inputs and tracking capacitance) to
the drive strength of the output driving the net. In general
the relative fanout should not exceed 12 (a process-inde-
pendent figure derived from Atmel cell characterization
data), otherwise the signals on the net are unacceptably
delayed, and edges are unacceptably slow.

The special case of fanout in clock signals is dealt with in
“Clock Buffering” on page 4.

Non-recommended Circuits
Any circuit which has excessive fanout on a data or control
signal is not recommended. An example is shown in Figure
45.

Figure 45. Excessive fanout on control signal

Tristate Enable
ASIC28

ASIC
Recommended Circuits
Use geometric or tree buffering in order to reduce fanout.
Examples of each type are shown in Figure 46 and Figure
47.

Figure 46. Geometric buffering on control signal

Tristate Enable

INV4
29

Figure 47. Tree buffering on control signal

Authorization
Relative fanout affects the speed of operation of a circuit.
Given sufficient time, highly loaded nets will eventually set-
tle to their correct logical value.

Accordingly, maximum relative fanout may be exceeded if
no clock signals are involved, and data signals have suffi-
cient time margin on input to clocked elements.

Tristate Enable
ASIC30

ASIC
Design for Speed
A number of techniques can be used to increase the opera-
tional speed of a circuit. To an increasing extent, these are
implemented automatically during design synthesis. If this
is not available, some of the most popular methodologies
are discussed in this section. These generally involve a
tradeoff between speed and silicon area. These techniques
are in addition to the fanout reduction methods described in
“Fanout” on page 28.

Recommended Circuits
Recommended techniques for increasing circuit speed, all
of which involve safe design practices, are given below.

1. Use a maximum of 2 inputs on all combinational
logic gates.

For example, an AND4 gate may be replaced by
NAND/NOR logic as shown in Figure 48.

Figure 48. 4-input AND gate and equivalent NAND/NOR logic

2. 2 Use AOI or OAI logic where possible.

AND/OR/Inverter (AOI) and OR/AND/Inverter (OAI) gates
are particularly economical for both speed and area. Their
use is recommended wherever possible.

Figure 49, Figure 50 and Figure 51 show three common
examples of the use of AOI logic: a multiplexer, an enabled
(E-type) flip-flop and a toggle (T-type) flip-flop.

Figure 49. Multiplexer using AOI logic

Equivalent faster NAND/NOR
logic using 2-input gates

AND4 gate

S

A

B

Y

31

Figure 50. E-type flip-flop with reset constructed from AOI logic

Figure 51. T-type flip-flop with reset constructed from AOI logic

D Q

CK QB

Q

QB

R

E

D

CK

D Q

CK QB

Q

QB

R

T

CK
ASIC32

ASIC
3. Feed late changing inputs late into combinational
logic.

An example of this technique is shown in Figure 52. The
aim is, as far as possible, to balance the total gate delay
along each path of a combinational circuit.

Figure 52. Late-changing input fed late into combinational logic

4. Use shift (Johnson) counters instead of binary
counters.

A Johnson counter (Figure 53) is a shift register with the
inverted output fed back into the primary input. An n-stage
Johnson counter produces a set of distinct outputs of
length 2n (see the truth table below), which can be
decoded to give a count sequence. Its advantage is that,
having no combinational logic between flip-flops, it can be
run at the maximum speed permitted by setup and hold
time constraints. The disadvantage of a Johnson counter is
that, for a required count of m, it requires m/2 flip-flops,
rather than log2(m) as required by a synchronous binary
counter.

A Johnson counter can be provided with a synchronous
reset, at the expense of an AND gate feeding into each flip-
flop.

Note that the same buffering considerations apply to the
clocking of long Johnson (and other) counters as they do to
shift registers. See “Shift Registers” on page 15.

The truth table for a Johnson Counter is shown in Table 1
below.

Figure 53. 4-stage Johnson counter

A

B

C

Early-changing
Inputs

Late-changing
Input

Y

Table 1. 4-stage Johnson Counter Truth Table

q0 q1 q2 q3

0 0 0 0

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

D Q

CK QB

R

D Q

CK QB

CLK

R

D Q

CK QB

R

D Q

CK QB

R

R

Q0 Q1 Q2 Q3
33

5 Use duplicate logic to reduce fanout. This technique is analogous to the use of tree buffering to
reduce fanout on clock signals. An example is shown in
Figure 54.

Figure 54. Using duplicate logic to reduce fanout

6 Use fast library cells where available.

Consult the timing figures in the Atmel Databook for the rel-
evant process, in order to identify the fastest available
library cell for the required function.

7 Reduce the length of critical signal paths.

If a net priority scheme is available for automatic routing,
raise the priority of nets in critical signal paths in order to
give them preference in automatic routing.

In addition, if required, use the manual routing facilities of
the design tool in order to identify the physical positioning
of critical signal paths, and to re-route these manually in
order to obtain the shortest path length.

8 Use Schmitt trigger inputs in noisy environments.

The use of Schmitt trigger inputs in noisy environments is
strongly recommended.

Non-optimised Circuit Circuit Optimised for Speed

Low Fanout
Critical Path

High Fanout
Non-critical Path

High Fanout
Non-critical Path

Low Fanout
Critical Path
ASIC34

ASIC
Design for Testability
Testability within ASICs is based on the single ‘stuck-at’
fault model: a faulty device is represented as having a sin-
gle internal net held permanently at logic 0 or logic 1,
regardless of how the net is driven. Although this model is a
simplification of the defects which can occur in an ASIC,
experience has shown that it is adequate in practice for
most purposes, and can form the basis of successful
design-for-testability methodologies.

In terms of the single ‘stuck-at’ model, testability is based
on two factors:

• Controllability: the ability to drive (from primary inputs)
every internal net to both logic 0 and logic 1. In particular,
the circuit must be reset to a known state within a
specified number of clock cycles after initialization.

• Observability: the ability to detect (at primary outputs)
that a single internal net is stuck at a state different from
its driven state.

Controllability and observability are achieved by a combi-
nation of circuit design techniques and the selection of
appropriate test vectors.

The fault coverage of a particular set of test vectors is:

Note that this formula is for net (output) `stuck-at' faults as
defined in the first paragraph above, and not for input
`stuck-at' faults.

Although the theoretical goal of 100% fault coverage is sel-
dom achievable in practice, this section gives some tech-
niques which enable an acceptably close figure to be
obtained.

Non-recommended circuits
The following are examples of circuits with low observabil-
ity/controllability. For each type of circuit, a recommenda-
tion is given later in this section for improving its testability.

Circuit with inaccessible internal logic
Figure 55 shows a typical circuit with a flow of bus-wide
data through a sequence of enabled (E-type) registers
linked by combinational logic. Control is by a central state
controller, which has connections to the register enable
lines and a control input to each combinational block.

From a testability point of view, the problem with this circuit
is that only the first combinational block is directly controlla-
ble from external inputs, and only the last combination
block is directly observable at external outputs. The central
combinational block is neither directly controllable nor
directly observable.

Figure 55. Circuit with inaccessible internal logic

Badly-designed state machines
For a circuit controlled by a state machine (such as that in
Figure 55), problems can occur if the following two condi-
tions are not met:

• all states must be decoded

• there must be no trap or lock states.

number of stuck-at faults identified by the vectors
2 number of nets in the circuit()×

--

Q

CK QB

Comb
Logic/

C
EREG

R

E

D

Q

CK QB

Comb
Logic/

C
EREG

R

E

D
Q

CK QB

Comb
Logic/

C
EREG

R

E

D

Q

CK QB
/

EREG
R

E

D

CK

R State Controller
�

������

��

 �����

 ������

/ / / /

////
35

Chain of counters
Figure 56 shows the output of one counter feeding the
enable of another. This configuration requires a large num-
ber of clock cycles to take the second counter through its
entire sequence. The output from the first counter is not
directly observable.

This design element violates both testability requirements:
the first counter is not directly observable, and the second
is not directly controllable.

A similar problem occurs with large single-element
counters: they require a large number of test vectors (2n for
an n-bit counter) in order to take them through their entire
count cycle.

Figure 56. Chain of counters

Counter with feedback loop
The state counter in Figure 57 has its reset activated by a
closed feedback loop triggered when it reaches an arbitrary
internal state. This makes it impossible to reset to a known
state at the start of a simulation.

Figure 57. Counter with closed feedback loop

�

�

��

�
�

��

!��"#���$
�%&%'�� (����

��#����

)
�
�

��

)

�

)

������

�

��

�
�

��

(����	
��#����

(����
����'���

(�

(��������

)

������
ASIC36

ASIC
Recommended circuits
The following techniques are recommended for improving
the testability of circuits which include elements of the
types given in the previous sections. In any particular case,
one or more techniques may be applied to a circuit,
depending on its particular configuration. The preferred
technique for complex, system-on-chip designs is scan
path testing.

The techniques are described below in brief outline only.
They do not form an exhaustive list, but are the methods
found to be most successful in practice for synchronous
designs based on a single clock signal. For more details,
consult a standard reference on testability techniques.

1. Insert test inputs and outputs.
Additional inputs and outputs are inserted in order to make
the internal logic of a circuit directly controllable and/or
observable. Test inputs (ti(0:n) and tj(0:n)) are connected
into the circuit via multiplexers. There is at least one test
control signal (tc) in order to control the test multiplexers.
Test out outputs to(0:n) and tp(0:n) are taken as outputs of
the circuit element. The general concept is illustrated in
Figure 58.

In test mode (tc high), test input data is fed directly into the
internal registers, and test output is observed directly from
the combinational logic blocks.

Figure 58. Circuit with test inputs and outputs

At the level of primary input/outputs, multiplexers may be
inserted in order to combine test and operational data sig-
nals, thus reducing the pin overhead of test circuitry.
Another possibility is to replace uni-directional input/output
cells by bi-directional cells, using the other direction for test
input/output. However, clock and reset signals must not be
treated in this way. This level of multiplexing is not shown in
Figure 58.

The minimum requirement is for a separate test control sig-
nal, unless an otherwise unused combination of control
inputs is used for test mode. If test control is achieved by
an otherwise unused combination of control inputs, care

must be taken to ensure that under no circumstances can
the circuit be inadvertently placed in test mode.

2. Break long counter/shift register chains.
Figure 59 shows how a chain of counters can be broken by
a test control signal (tc) brought in using an OR gate. When
the test control signal is high, the second counter incre-
ments at every clock cycle. The output from the first
counter is taken to a primary output as the test output (to)
signal.

A similar technique can be used to break up long single-
element counters and shift registers.

Q

CK QB

Comb
Logic/

C
EREG

R

E

D

Q

CK QB

Comb
Logic/

C
EREG

R

E

D
Q

CK QB

Comb
Logic/

C
EREG

R

E

D

Q

CK QB
/

EREG
R

E

D

CK
R State Controller

�

������

��

 �����

 ������

*�

*
�����

*+�����

��

�

,
-.,

��

�

,
-.,

*/�����

*0�����

/

/

/

/

/

/

/

/

/ /

/
/

/

/

37

Figure 59. Chain of counters broken by test input and output signals

3. Open feedback loops.
Figure 60 shows how the feedback loop between a state
decoder and a state counter is broken by the insertion of a
test reset (tr) signal, and the connection of the reset state to

a test output (to) signal. When tr is high, the circuit func-
tions normally; the state counter is reset by forcing tr low.
The value of the internal reset is monitored by the signal to.

Figure 60. Counter with feedback loop opened by test control and output signals

4. Use BIST with compiled megacells.
Compiled megacells (RAM, ROM, PLA, Multiplier, Dual-
port RAM and FIFO) are inherently difficult to test, owing to
their internal complexity, combinational depth and the small
number of input/output signals relative to the number of
internal cells.

To provide a solution to this problem giving 100% fault cov-
erage for single ‘stuck-at’ faults, Atmel has implemented a
built-in self-test (BIST) option for each compiled megacell.
Selecting the BIST option produces a compiled megacell
with customized test circuitry and three additional pins:
BIST select (bt), BIST clock (bck) and BIST result (br). In
most cases the BIST clock signal can be connected directly
to the main system clock. See Figure 61.

In operational mode, the BIST select signal is low, and the
normal working of the compiled megacell is unaffected. In
BIST mode, with BIST select high, a sequence of clock

edges on the BIST clock signal takes the megacell through
a fixed test sequence which completely exercises all inter-
nal cells, and results in a unique signature on the BIST
result signal after a specific number of clock cycles. On a
fabricated device, any fabrication error within the megacell
is revealed as a difference between the signature obtained
and that resulting from a fault-free simulation of the device.

Figure 61. Compiled megacell with BIST input/outputs

�

�

��

�
�

��

!��"#���$
�%&%'�� (����

��#����

)
�
�

��

)

�

)

������

*�

*�

�

��

�
�

��

(����	
��#����

(����
����'���

(�

(��������

)

������

*�

*/

/1����%����

�1#��

/1����%����
/#�1#��

�*
���
����21%��'

-�3�����
��
(*
�1�%���
ASIC38

ASIC
5. Scan path testing.
An established technique for providing a high level of fault
coverage in a circuit which has inaccessible internal logic is
scan path testing. This requires the insertion of multiplex-
ers in front of all storage elements in the circuit (such as the
E-type flip-flop in Figure 62), and linking the additional
inputs to form a single shift register which threads the
entire device (Figure 63). This forms the scan path, from
scan input si to scan output so. Note that buffering may be
necessary between the q and so outputs of a scan flip-flop
if they are both connected to external part-level or device-
level outputs. Scan insertion can be performed automati-
cally by sysntesis tools.

If the circuit contains gated clocks. dual-edged clocks or
asynchronous control signals, multiplexers must be
inserted where appropriate so that, in test mode, all
clocked elements are activated on the same clock edge,

and all control signals are synchronous. Extreme care must
be taken in inserting these multiplexers, in order not to
introduce spikes or skew on clock or control lines. See
“Gated Clocks” on page 10.

Figure 62. E-type scan path flip-flop

Figure 63. Circuit with scan path

In scan test mode, with the scan control signal sc high, a
test pattern is shifted in serially through the scan path. The
circuit is then put into operational mode for a single clock
cycle, which propagates the test data through the combina-
tional logic and back into the registers in the scan path.
Again in scan test mode, the result is then shifted out
through the scan chain. The test vectors are selected in
order to exercise all the combinational logic in the circuit.

Test vectors for use with a scan path can be produced by
an analysis of the logic functions implemented in the com-
binational logic blocks in the circuit. Alternatively, a
pseudo-random binary sequence (PRBS) generator can be
inserted at the start of the scan path, to produce a random

test sequence. This can be combined with a signature anal-
yser at the end of the scan path, which compresses the bit
stream into a short, unique signature. Both the PRBS gen-
erator and the signature analyser are based on the tech-
nique of linear feedback shift registers. This method
eliminates the need to develop a long set of test vectors, for
a small overhead in silicon area. It produces an acceptably
high level of fault coverage, and also permits in-service
testing of devices.

As a further alternative, the software tools which perform
scan path insertion also generate automatically a corre-
sponding set of scan test vectors.

D

Q

CK QB

R

S

A

B

MUX

��

(

(�

�

��

�

(/

 �

�

Q

CK QB

Comb
Logic/

C
SREG
R

E

D

Q

CK QB

Comb
Logic/

C
SREG
R

E

D
Q

CK QB

Comb
Logic/

C
SREG
R

E

D

Q

CK QB
/

SREG
R

E

D

CK

R State Controller
�

������

��

 �����

 ������

(�

(
 (�(
 (/

(/(�(
 (/
(�(
 (/ (�(
 (/ (�(
 (/

/

/

/

/

/

/

/

/

39

6. JTAG boundary scan path.
In addition to a scan path threading the internal logic of a
circuit, a scan path may be constructed around the primary
input/output cells. This technique follows the JTAG/IEEE
1149.1 standard, and provides a capability for board-level
connectivity tests without the need to propagate test vec-
tors through the core of a device. This is achieved by add-
ing test circuitry and test pins to a device which enable all
input and output pins to be connected together in a bound-
ary scan path. The boundary scan path is a shift register

with a parallel load facility which can be used to control and
read the signal states on all input/output cells. See Figure
64.

In addition, the JTAG methodology allows the tester to
interrogate an IC buried in the middle of the PCB, to run
diagnostic checks, to identify the IC, or to sample the signal
states of its pins during normal operation.

At PCB level, all such scan chains are connected together
in series (parallel branches are permitted).

Figure 64. JTAG test circuitry

�
����

+*�4
*���	��3%�

*-(
*��
*�

*�/

�	5%�6	+*�4
*���	�%��#%��$

*���	������
0���	�*�0�

�
����

/�%3%���	
�
ASIC40

ASIC
Test Vector Generation
Functional and Post-fabrication Tests
In the complete ASIC design and fabrication cycle, there
are two main test phases:

• functional testing, to check whether the circuit design
conforms to its functional specification

• post-fabrication testing, to ensure that each device
has been fabricated without any faults.

It is essential to distinguish between the purposes of these
tests: functional tests are concerned with the operation of
the ASIC relative to its specification, post-fabrication tests
are to check for differences between the operation of each
individual die and an ideal, fault-free device (in practice a
fault-free simulation of the circuit). This distinction is not
always clearly drawn in practice, and in many cases the
same simulation stimuli are applied to both types of test.

The fault-free simulation against which the post-fabrication
tests are measured should (ideally) exercise all the nets in
the circuit, in such a way that a fault in any net will show as
a difference in an output signal. This simulation assumes
(but does not verify) that the circuit is functioning according
to specification.

This section gives some background information required
for the generation of vectors intended for post-fabrication
tests, their essential properties, and the specific require-
ments which they must satisfy. To an increasing extent,
these test vectors are generated automatically as part of
scan insertion. If this is not possible, then the guidelines in
this section must be followed. These test vectors (both
inputs and expected outputs) are supplied to Atmel, in a
recognized format, with the design database for fabrication.

Static Test Vectors
An important concept which underlies the techniques for
testing ASICs is that of static and dynamic circuits. These
are defined as follows:

A static digital circuit is one which reaches a stable state a
certain time after a set of inputs is applied, and then
remains in that state for as long as it is powered up. For
example, if the clock were to stop, the circuit would remain
in a stable state as long as power were supplied.

A dynamic digital circuit does not reach a stable state after
a certain time, or the stable state represents a loss of data,
such as leakage from a dynamic RAM. In dynamic circuits,
a clock failure would lead to a loss of data.

Test vectors are designed on assumption that the device
under test is a static circuit. They must also be compatible
with the operation of the automatic test equipment used for
post-fabrication tests. Test vectors which satisfy these con-
ditions are called static test vectors. Their essential proper-
ties are as follows:

• For each test period, all inputs are applied
simultaneously at the start of the period (1000ns,
10000ns or a multiple thereof).

• All outputs are strobed 10ns before the end of the test
period

• All outputs and internal nodes must have reached a
stable state 200ns before the strobe point.

• Input data must not change on the active edge of the
clock which latches it.

The above three requirements for static test vectors are
illustrated in Figure 65.

Figure 65. Static test vectors

• Static test vectors must also satisfy a number of specific
requirements which are discussed in a later section.

A consequence of the requirement for static circuits is that
the behavior of a circuit under test can be described by a

truth table, where the inputs are all applied together at the
start of the static test vector period, and the outputs are at a
stable state after the setting period.

�����

�1#�

/#�1#�

(���%�	����	&�����	1��%�'
���	%�1#��	�6��3�	
��	�����	��	����	
&�����	1��%�'

(�����	1�%���	
���
	������	��'	��	����	
&�����	1��%�'

�1#��	�6��3�	��
%����%&�	�����	�'3�

/#�1#��	������	���	��	������
������	1�%��

���

�����
41

Static Vectors for Bi-directional Input/Outputs
One circuit element which requires special attention in the
design of static test vectors is the bi-directional input/out-
put. The problem is that there is almost always a short
period of contention on the pad as it changes from output to
input. This is because the bi-directional control line is usu-

ally changed through internal logic, which produces a gate
delay, whereas the simulated direction of the pad is deter-
mined externally, with no gate delay. Accordingly, the simu-
lator has started to drive input data to the pad while it is still
in its output state. The situation is illustrated in Figure 66.

Non-recommended protocol

Figure 66. Contention on bi-directional input/output pad

�����

��������
�%'%�	����

(%2#�����

�1#�

�������
�%'%�	����

7/	0�'
����

/#�1#�
�1#� /#�1#�
�1#�

8%36

21�'����
�1#�

8%36

21�'����
�1#�

/#�1#�
�1#� /#�1#�
�1#�

/#�1#�
�1#� /#�1#�
�1#�

4���	'���$

�������%��
ASIC42

ASIC
The solution to this problem, to meet tester requirements, is
to delay the application of input data by the simulator for a

clock period after the transition from output to input. This is
illustrated in Figure 67.

Recommended protocol

Figure 67. Delayed input on bi-directional input/output pad

ASIC Test Procedures
Post-fabrication tests are applied to ASICs using industry-
standard automatic test equipment (ATE). The test vectors
and pinout data submitted with a design are used to config-
ure the ATE, and apply the test sequence. The overall pro-
cedure is as follows:

A truth table is extracted from the simulation vectors, and
used to set up the ATE. The test equipment applies the test
vectors at regular intervals (1000ns for digital designs and
10000ns or a multiple thereof for mixed analog/digital
designs) and strobes the outputs from the ASIC 10ns
before the end of this interval.

If any output differs from the one produced by fault-free
simulation, then the particular device is rejected. A table is
produced, showing the vector number at which each failure
occurred, for the skew on each input.

In order to test the tolerance of the device to clock skew,
the operational test cycles are repeated a number of times,
each with one input advanced or retarded in steps of 10ns
to a maximum skew of 80ns. (Note that the clock signal is
not treated as a special case in the test process.)

If required, a variety of additional tests may be applied,
including parametric tests and speed tests using functional
vectors at full operational speed. These test such aspects
as carry propagation.

Rules for Test Vectors
Design Rules
The following rules for test vectors are to ensure that they
(and the associated design) are in general compliance with
the design guidelines set out in this and previous sections
of this document:

• An external master reset must be used (even if there is a
POR cell) to ensure a complete device initialization.

• The package used must be in the Atmel ASIC Package
Selector Guide.

• All I/O cell names must be from an Atmel Library or other
known source, and not modified. If not, a Buffer
Information Base (BIB) file must be created containing
the name and details of the new I/O cell.

• Long counters and shift registers must have test access
to intermediate stages.

• All internal feedback loops must be broken with test I/Os.

• Redundant logic must be avoided.

• Compiled megacells must either use the BIST option or
have direct test access to input/outputs.

• Analog cells are peripherals. At most two analog cells
may be connected in series.

�����

��������
�%'%�	����

(%2#�����

�1#�

�������
�%'%�	����

7/	0�'
����

/#�1#�
�1#� /#�1#�
�1#�

8%36

21�'����
�1#�

8%36

21�'����
�1#�

/#�1#�
�1#� /#�1#�
�1#�

/#�1#�
�1#� /#�1#�
�1#�

/��	�$���	'���$

8%36	
21�'����
43

• Different types of analog cells may not be placed in
parallel, except if one is for input and the other for output.

Simulation Rules
Table 2 shows the nine possible simulation events or signal
settings that can occur. The abbreviations shown are used
in the list of checks that follows. I denotes either an input
pad or a bi-directional pad configured as an input. O

denotes an output pad, a bi-directional pad configured as
an output, a tristate pad or an (internal) enable signal.

Table 2. Possible Simulation Events

Event value Signal state

Event type 0 1 X

I (input) I:0 I:1 I:X

O (output) O:0 O:1 O:X

Z (tristate) Z:0 Z:1 Z:X
ASIC44

© Atmel Corporation 1999.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard war-
ranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual prop-
erty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are
not authorized for use as critical components in life support devices or systems.

Marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation.

Terms and product names in this document may be trademarks of others.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel U.K., Ltd.
Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686-677
FAX (44) 1276-686-697

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex
France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Fax-on-Demand
North America:
1-(800) 292-8635

International:
1-(408) 441-0732

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

 Printed on recycled paper.

1205A–12/99/xM

	Introduction
	Synchronous Circuits
	Non-recommended Circuits
	Flip-flop driving clock input of another flip-flop
	Gated clock line
	Double-edged clocking
	Flip-flop driving asynchronous reset of another flip- flop.

	Recommended Circuits

	Clock Buffering
	Non-recommended Circuits
	Unequal depth of clock buffering
	Unbalanced fanout on clock buffers
	Excessive clock fanout

	Recommended Circuits
	Balanced clock tree buffering
	Combined geometric/tree buffering
	Clock Bar Cells
	Balanced clock routing using clock bar cells
	Clock Guidance
	Good example of clock guidance
	Bad example of clock guidance
	Clock Compilers

	Gated Clocks
	Non-recommended Circuits
	Multiplexer on clock line

	Recommended Circuits
	Enabled (E-type) flip-flop
	Toggle (T-type) flip-flop

	Double-edged Clocking
	Non-recommended Circuit
	Pipelined logic with double-edged clocking

	Recommended Circuit
	Pipelined logic with single-edged clocking

	Clock Generation and Overall Circuit Control
	Recommended Circuit
	Generating higher- or lower-speed internal clocks

	Asynchronous Resets
	Non-recommended Circuit
	Local asynchronous reset of a flip-flop

	Recommended Circuits
	Global asynchronous reset of all flip-flops
	Local synchronous reset of a flip-flop

	Shift Registers
	Non-recommended Circuits
	Shift register with forward chain of clock buffers
	Shift register with reverse chain of clock buffers

	Recommended Circuits
	Shift register with balanced clock tree buffering

	Asynchronous Inputs
	Non-recommended Circuits
	Recommended Circuits
	Two D-type flip-flops in series to capture an asynchronous input
	Asynchronous handshake circuit

	Delay Lines and Monostables
	Non-recommended Circuits
	NAND2 gate used as delay element
	NAND3 gate with two inputs connected together
	Monostable pulse generator
	Pulse generator using a flip-flop
	Multivibrator

	Recommended Circuit
	Synchronous pulse generator

	Authorization

	Bistable Elements
	Non-recommended Circuits
	Cross-coupled NAND gates
	Cross-coupled NOR gates
	RS flip-flop

	Recommended Circuits
	Latch configured as RS flip-flop

	RAMs/ROMs in Synchronous Circuits
	Recommended Circuits
	ME and WEBar Generation
	Avoiding Floating Outputs during Write Phase

	Internal Tristates
	Non-recommended Circuit
	Local control of tristate enables

	Recommended Circuits
	Central control of tristate enables
	Multiplexers vs tristates

	Paralleling Signals
	Non-recommended Circuit
	Recommended Circuit

	Fanout
	Non-recommended Circuits
	Recommended Circuits
	Authorization

	Design for Speed
	Recommended Circuits

	Design for Testability
	Non-recommended circuits
	Circuit with inaccessible internal logic
	Badly-designed state machines
	Chain of counters
	Counter with feedback loop

	Recommended circuits

	Test Vector Generation
	Functional and Post-fabrication Tests
	Static Test Vectors
	Static Vectors for Bi-directional Input/Outputs
	Non-recommended protocol
	Recommended protocol

	ASIC Test Procedures
	Rules for Test Vectors
	Design Rules
	Simulation Rules

