
t e c h n o l o g i e s
Infineon Chapter

SC Highway Release 2.1,
June 26, 2000

A
p

p
lic

a
ti

o
n

 N
o

te
s

1

1Application Notes

1
VHDL Coding Guidelines

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes2

t e c h n o l o g i e s
Infineon

1.1 Introduction

Coding of design behaviour and architecture is one of the most important steps in the whole chip
design project. It has major impact on logic synthesis and routing results, timing robustness, ver-
ifiability, testability and even product support.

The VHDL Coding Guidelines help chip and macro development teams to rapidly understand each
other's code. Macro based designs integrate easier, if these common coding styles are followed.
This also applies to externally developed softcores. Codes will not need modification if simulator,
synthesis tool or technology is exchanged. Code invariance wrt. Synthesis tool is given in case of
a similar VHDL synthesis subset. Code invariance wrt. technology is given in case of similar per-
formance and cell set. In addition the given guidelines enable high synthesis quality and simula-
tion performance.

The VHDL Coding Guidelines need continuous adaptation according to new tool properties and
new upcoming methodologies. Please participate in this process with your design know-how.
Direct your contributions and related questions to the SC Highway Frontend Hotline (hwfe@hl.sie-
mens.de, tel.: 24666). Contribute rules for VHDL coding, that turned out to prevent errors in the
downstream flow, or recommendations, that alleviate further design, re-use or maintenance.

The VHDL Coding Guidelines may be passed to sub-contractors or cooperation partners. Ideally
their coding works should comply to these guidelines, enabling rapid and safe integration with
internally developed modules.

Reading of the VHDL Coding Guidelines is most efficient at the beginning of a chip-design-project.
Furthermore "Early Code Review" should be considered in a very early phase of VHDL coding as
a training measure.

Up to now every designer is responsible to follow relevant rules. Automated checks are not yet
available. However, it is planned, to integrate such a tool into SC Highway, which will then use the
rules that are given here.

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.2 Rules by Topics 1

3Application Notes

1.2 Rules by Topics

Each item is marked according to the categories

❏ mandatory (m)

❏ strongly recommended (r)

❏ advisable (a)

❏ explanatory (e)

1.2.1 Compilation

1. Configuration must be in a separated file (m)

2. A configuration declaration is needed for each architecture (m).

3. Testbench and DUT should be compiled into the same library (a).

4. Design-internal references must use library work (m).

5. Edit env-files to extend the resource-library list (e).

6. Avoid more package references than needed (a).

7. Use expanded names in binding indications and use clauses only (r).

1.2.2 Partitioning VHDL Code

1. Use standard top-levels xmpl, xmpl_top, and xmpl_chip (r).

2. Keep all objects and subprograms in the nearest possible scope (a).

3. Keep local objects invisible outside a package (a).

4. Transfer stable component declarations into component packages (a).

5. Re-use functionality of standard packages as much as possible (a).

6. A VHDL unit should not exceed 200 lines of code (a)

7. A process or subprogram should not exceed 50 lines of code (a)

8. Component instantiations should not exceed 4 levels of hierarchy (a)

9. An architecture should not contain more than 5 processes (a)

10. Size of VHDL Units(a).

11. VHDL units should take into account later floorplanning (a).

12. Asynchronous parts should be placed into separate entities (a).

13. Structural and behavioural code should not be mixed (r).

14. Define project packages early in the project (a).

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes4

t e c h n o l o g i e s
Infineon

1.2.3 Storing VHDL Code

1. Only verified VHDL code allowed for check-in (m).

2. Store each VHDL unit into a separate file (r).

3. Hide old VHDL files (e).

4. Submodules referenced by more than one module should be stored into a separate units
directory (a).

1.2.4 Naming Conventions

1. All primary unit names must be unique in the project library (m).

2. Naming conventions for VHDL units (a).

3. Naming conventions for VHDL files (a).

4. Naming conventions for VHDL objects (a).

5. Identifier naming must be based on English language (m).

6. Use meaningful identifier names (a).

7. Signal assignments for renaming purposes should be avoided (a).

8. Choose short instance names (a).

9. Keyword casing should be uniform in all VHDL code (a).

10. Identifier casing should be uniform in all VHDL code (r).

11. Separate identifier components using underscores (a).

12. Trailing and consecutive underscores are not allowed in identifiers (m).

13. Use an intermediate signal for reading from an output port (e).

14. Use standard top-levels xmpl, xmpl_top, and xmpl_chip (r).

15. Length of entity names should not exceed 32 characters (r).

1.2.5 Data-Types

1. Unresolved data types std_ulogic(_vector) are recommended (a).

2. Data types at chip and macro ports: std_(u)logic(_vector) (m).

3. Data types at module ports: std_(u)logic(_vector) recommended (a).

4. Generics must have type integer for synthesis (m).

5. Use complex data types inside architectures (a).

6. Use a small number of self-defined global data types (a).

7. Self-defined conversion functions must assert un-mappable input values (m).

8. Multidimesional arrays can lead to mismatch between TRF file and Verilog netlist (e).

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.2 Rules by Topics 1

5Application Notes

1.2.6 Design Rules

1. Avoid gated clocks unless absolutely necessary (r).

2. Avoid latches unless absolutely necessary (r).

3. Reset is mandatory for sequential processes (m).

4. All outputs of synchronous modules should be registered (r).

5. Use gate instantiation only at few instances (r).

6. Avoid internal three-state busses unless absolutely necessary (r).

7. Component instantiation (e).

8. Avoid snake paths (r).

9. Instantiate the power pads for each power-domain (r).

10. Insert test-enable for scan-test (m).

11. Refer to the rising edge of clock (r).

12. Do not use combinational feedback paths (m).

13. Spacer cells needed between pads (e).

1.2.7 Modeling Details

1. Spend extensive efforts for documentation of interfaces (r).

2. Build interface consistency checks into the model (a).

3. Balance clock to delta accuracy (m).

4. Pull-ups and pull-downs have to be modeled on chip level (r).

5. Strength stripping should be performed on chip level (r).

6. Do not assign the value 'X' (r).

7. Use efficient description for the wrap around of counters (a).

8. Use case -statements instead of if -statements when the conditions are mutually exclu-
sive (a).

9. Use vector operations instead of loops (a).

10. Use boolean expressions instead of simple if -statements (a).

11. Avoid unnecessary repetition of function calls (a).

12. Avoid unnecessary computations within loops (a).

13. Do not use FSM attributes within the VHDL code (m).

1.2.8 Testbenches

1. A testbench has neither ports nor generics (e).

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes6

t e c h n o l o g i e s
Infineon

2. Format for pattern text-IO is LSIM-TV (a).

3. Use abstract, compact coding style in testbench and simulation models (a).

4. Stop the simulation from within the testbench (a).

5. Use assertion messages extensively (a).

6. Global signals may be used for testing purposes only (m).

1.2.9 Text-IO

1. Use std.textio only, where really necessary (a).

2. Communication between modules using text-IO is forbidden (m).

3. No characters with a lower rank than space may occur in text-IO (m).

4. Binary file-IO may not be used (a).

5. Use relative pathnames for files accessed through text-IO (m).

6. Check the success of every file operation (r).

7. Store file data to a VHDL variable, if read multiple times (e). Format for pattern text-IO is
LSIM-TV (a).

1.2.10 Readability

1. Use a separate library clause for each declared resource library (a).

2. Use a separate use clause for each declared package (a).

3. Indentation should be consistent in all VHDL code (r).

4. Align comments vertically (a).

5. Align declaration lists vertically (a).

6. Align association lists vertically (a).

7. Processes should be labeled (r).

8. Use closing labels for entity, architecture, process, loop, generate, etc. (a).

9. Indicate condition at remote ends of control structures (a).

10. Language for comments and code documentation is English (m).

11. Comments should be related to the lines of code below (a).

12. Comment each process, each subprogram and global aspects (r).

13. Trailing comments are allowed for declarative lists (a).

14. Aliases are allowed in testbenches and behavioural code only (m).

15. Maximum line-length is 80 characters (a).

16. Use one statement per line (a).

17. Group related constructs (a).

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.2 Rules by Topics 1

7Application Notes

18. Group related port or signal declarations (a).

19. Switch constructs should not be nested to more than 4 levels (a).

20. Remove unnecessary code fragments (a).

21. Use named association in association lists (r).

22. Order of items should be the same in package header and body (r).

23. Use predefined attributes to make code generic and more re-usable (a).

1.2.11 Portability

1. Language for modeling is VHDL-87 (m).

2. Check for LRM-compatibility using cv w/o -compat switch (r).

3. VHDL-93 keywords should not be used (r).

4. Verilog keywords should not be used (r).

5. SDF keywords should not be used (r).

6. Carefully use real values with PN-generators (a).

7. Allowable replacement characters are forbidden (m).

8. Tool specific types may not be used (m).

9. Operating system specific features may not be used (r).

10. Never redefine standard operators, subprograms, attributes, and packages (r).

11. Bussed ports of width one are forbidden (r).

12. Design-internal references must use library work (m).

13. Configuration declarations must have the configuration name and the entity name in one
line for vimport (a).

1.2.12 Arithmetic

1. Bussed arithmetic objects use "downto" as their index orientation (r).

2. Request external VHDL code suppliers to deliver used arith. packages (r).

3. Where to use ieee.std_logic_arith and std_developerskit.synth_regpak (e).

4. Where to use std_logic_signed and std_logic_unsigned (e).

5. Array widths for std_logic_arith operators (e).

6. Use conversion functions around arithmetic operators (e).

7. Comparison of arith. arrays should be based on same type and width (r).

8. Type mark comparison operands (r).

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes8

t e c h n o l o g i e s
Infineon

1.2.13 Synthesizability

Note that the restrictions listed below do not apply to pure simulation models and not to testbench
models. This section is not a replacement for the "VHDL Compiler Reference Manual" (Synopsys).

1. Run synthesis early in the design process (r).

2. Code for synthesis must match the synthesis subset (m).

3. Store package header and body into same file (m).

4. Default values for ports, signals and variables may not be used (m).

5. Data types must be synthesizable (m).

6. Array ranges must be of type integer (m).

7. Integer type objects must be constrained wrt. to their range (m).

8. Use standard templates for clocked processes (r).

9. Generics must have type integer (m).

10. For soft-core development use generics, don't use constants (r).

11. Place port and generic maps at the component instantiation (m).

12. Instantiated component and entity name must be equal, incl. casing (m).

13. Add an "others" statement to the FSM-switch (m).

14. All conditional assignments should be checked for completeness (r).

15. The sensitivity list for combinational processes must be complete (m).

16. Bit-wise association of arrays in port maps is not possible in presence of generics (m).

17. Use gate instantiation only at few instances (r).

18. Aliases may not be used for synthesis (m).

19. Embedding synthesis scripts as meta comments is not acceptable (r).

20. Use only standard meta comments (r).

21. Requirements for resource sharing (e).

1.2.14 Simulation Performance

1. Remove unnecessary code fragments (a).

2. EMC and transmission line effects need not be modeled (a).

3. Use abstract data types inside modules (a).

4. Avoid using resolved data types (a).

5. Minimize the number of processes, signals and signal assignments (a).

6. Replace signals by variables whenever possible (a).

7. Inhibit execution of statements where not necessary (a).

8. Divide large memories into blocks (a).

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.2 Rules by Topics 1

9Application Notes

9. Avoid unnecessary repetition of function calls (a).

10. Avoid unnecessary computations within loops (a).

11. Avoid declaring constants within subprograms (a).

12. Be aware of the use of the attributes DELAYED, STABLE, QUIET, and TRANSACTION (a).

13. Minimize the number of signals of your sensitivity list (a).

14. Always use deallocate(access_obj) to dereference allocated memory (r).

1.2.15 Critical Constructs

1. Do not use anonymous types (r).

2. Do not use guarded signals, guarded assignments, and guarded expressions (r).

3. Do not use disconnect, register, and bus (r).

4. Do not use port modes buffer and linkage (r).

5. Do not use blocks. Use entities instead to describe design hierarchy (a).

6. Use only well tested functions for object-initialization purposes (a).

7. Concurrent procedures may not have any side effects (r).

8. Avoid identifier hiding caused by loop index (r).

9. Global signals may be used for testing purposes only (m).

10. Recursive use of subprograms is forbidden (m).

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes10

t e c h n o l o g i e s
Infineon

1.3 Rules by Importance

1.3.1 Mandatory

1. Configuration must be in a separated file (m)

2. A configuration declaration is needed for each architecture (m).

3. Design-internal references must use library work (m).

4. Only verified VHDL code allowed for check-in (m).

5. Store package header and body into same file (m).

6. All primary unit names must be unique in the project library (m).

7. Data types at chip and macro ports: std_(u)logic(_vector) (m).

8. Generics must have type integer for synthesis (m).

9. Trailing and consecutive underscores are not allowed in identifiers (m).

10. Identifier naming must be based on English language (m).

11. Self-defined conversion functions must assert un-mappable input values (m).

12. Reset is mandatory for sequential processes (m).

13. Insert test-enable for scan-test (m).

14. Do not use combinational feedback paths (m).

15. Global signals may be used for testing purposes only (m).

16. Communication between modules using text-IO is forbidden (m).

17. No characters with a lower rank than space may occur in text-IO (m).

18. Use relative pathnames for files accessed through text-IO (m).

19. Balance clock to delta accuracy (m).

20. Do not use FSM attributes within the VHDL code (m).

21. Language for comments and code documentation is English (m).

22. Language for modeling is VHDL-87 (m).

23. Allowable replacement characters are forbidden (m).

24. Tool specific types may not be used (m).

25. Code for synthesis must match the synthesis subset (m).

26. Default values for ports, signals and variables may not be used (m).

27. Data types must be synthesizable (m).

28. Array ranges must be of type integer (m).

29. Integer type objects must be constrained wrt. to their range (m).

30. Place port and generic maps at the component instantiation (m).

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.3 Rules by Importance 1

11Application Notes

31. Instantiated component and entity name must be equal, incl. casing (m).

32. Add an "others" statement to the FSM-switch (m).

33. The sensitivity list for combinational processes must be complete (m).

34. Bit-wise association of arrays in port maps is not possible in presence of generics (m).

35. Aliases may not be used for synthesis (m).

36. Recursive use of subprograms is forbidden (m).

1.3.2 Strongly Recommended

1. Use expanded names in binding indications and use clauses only (r).

2. Identifier casing should be uniform in all VHDL code (r).

3. Use standard top-levels xmpl, xmpl_top, xmpl_chip (r).

4. Length of entity names should not exceed 32 characters (r).

5. Structural and behavioural code should not be mixed (r).

6. Store each VHDL unit into a separate file (r).

7. Avoid gated clocks unless absolutely necessary (r).

8. Avoid latches unless absolutely necessary (r).

9. Use gate instantiation only at few instances (r).

10. Avoid internal three-state busses unless absolutely necessary (r).

11. Avoid snake paths (r).

12. Instantiate the power pads for each power domain (r).

13. All outputs of synchronous modules should be registered (r).

14. Spend extensive efforts for documentation of interfaces (r).

15. Pull-ups and pull-downs have to be modeled on chip level (r).

16. Strength stripping should be performed on chip level (r).

17. Do not assign the value 'X' (r).

18. Check the success of every file operation (r) .

19. Indentation should be consistent in all VHDL code (r).

20. Processes should be labeled (r).

21. Comment each process, each subprogram and global aspects (r).

22. Use named association in association lists (r).

23. Order of items should be the same in package header and body (r).

24. Check for LRM-compatibility using cv w/o -compat switch (r).

25. VHDL-93 keywords should not be used (r).

26. Verilog keywords should not be used (r).

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes12

t e c h n o l o g i e s
Infineon

27. SDF keywords should not be used (r).

28. Operating system specific features may not be used (r).

29. Never redefine standard operators, subprograms, attributes, and packages (r).

30. Bussed ports of width one are forbidden (r).

31. Bussed arithmetic objects use "downto" as their index orientation (r).

32. Request external VHDL code suppliers to deliver used arith. packages (r).

33. Comparison of arith. arrays should be based on same type and width (r).

34. Type mark comparison operands (r).

35. Run synthesis early in the design process (r).

36. Use standard templates for clocked processes (r).

37. Refer to the rising edge of clock (r).

38. For soft-core development use generics, don't use constants (r).

39. All conditional assignments should be checked for completeness (r).

40. Embedding synthesis scripts as meta comments is not acceptable (r).

41. Use only standard meta comments (r).

42. Always use deallocate(access_obj) to dereference allocated memory (r).

43. Do not use anonymous types (r).

44. Do not use guarded signals, guarded assignments, and guarded expressions (r).

45. Do not use disconnect, register, and bus (r).

46. Do not use port modes buffer and linkage (r).

47. Concurrent procedures may not have any side effects (r).

48. Avoid identifier hiding caused by loop index (r).

1.3.3 Advisable

1. Testbench and DUT should be compiled into the same library (a).

2. Use a separate library clause for each declared resource library (a).

3. Use a separate use clause for each declared package (a).

4. Avoid more package references than needed (a).

5. Keep all objects and subprograms in the nearest possible scope (a).

6. Keep local objects invisible outside a package (a).

7. Transfer stable component declarations into components packages (a).

8. Re-use functionality of standard packages as much as possible (a).

9. A VHDL unit should not exceed 200 lines of code (a)

10. A process or subprogram should not exceed 50 lines of code (a)

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.3 Rules by Importance 1

13Application Notes

11. Component instantiations should not exceed 4 levels of hierarchy (a)

12. An architecture should not contain more than 5 processes (a)

13. Size of VHDL Units(a).

14. VHDL units should take into account later floorplanning (a).

15. Asynchronous parts should be placed into separate entities (a).

16. Define project packages early in the project (a).

17. Naming conventions for VHDL units (a).

18. Submodules referenced by more than one module should be stored into a separate units-
directory (a).

19. Naming conventions for VHDL files (a).

20. Naming conventions for VHDL objects (a).

21. Use meaningful identifier names (a).

22. Signal assignments for renaming purposes should be avoided (a).

23. Choose short instance names (a).

24. Keyword casing should be uniform in all VHDL code (a).

25. Separate identifier components using underscores (a).

26. Unresolved data types std_ulogic(_vector) are recommended (a).

27. Data types at module ports: std_(u)logic(_vector) recommended (a).

28. Use complex data types inside architectures (a).

29. Use a small number of self-defined global data types (a).

30. Build interface consistency checks into the model (a).

31. Use efficient description for the wrap around of counters (a).

32. Format for pattern text-IO is LSIM-TV (a).

33. Use abstract, compact coding style in testbench and simulation models (a).

34. Stop the simulation from within the testbench (a).

35. Use assertion messages extensively (a).

36. Use std.textio only, where really necessary (a).

37. Binary file-IO may not be used (a).

38. Align comments vertically (a).

39. Align declaration lists vertically (a).

40. Align association lists vertically (a).

41. Use closing labels for entity, architecture, process, loop, generate, etc. (a).

42. Indicate condition at remote ends of control structures (a).

43. Comments should be related to the lines of code below (a).

44. Trailing comments are allowed for declarative lists (a).

45. Maximum line-length is 80 characters (a).

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes14

t e c h n o l o g i e s
Infineon

46. Use one statement per line (a).

47. Group related constructs (a).

48. Group related port or signal declarations (a).

49. Switch constructs should not be nested to more than 4 levels (a).

50. Remove unnecessary code fragments (a).

51. Use predefined attributes to make code generic and more re-usable (a).

52. Configuration declarations must have the configuration name and the entity name in one
line for vimport (a).

53. Use case-statements instead of if-statements when the conditions are mutually exclusive
(a).

54. Use vector operations instead of loops (a).

55. Use boolean expressions instead of simple if-statements (a).

56. Carefully use real values with PN-generators (a).

57. EMC and transmission line effects need not be modeled (a).

58. Minimize the number of processes, signals and signal assignments (a).

59. Replace signals by variables whenever possible (a).

60. Inhibit execution of statements where not necessary (a).

61. Divide large memories into blocks (a).

62. Avoid unnecessary repetition of function calls (a).

63. Avoid declaring constants within subprograms (a).

64. Be aware of the use of the attributes DELAYED, STABLE, QUIET, and TRANSACTION (a)

65. Minimize the number of signals of your sensitivity list (a).

66. Avoid unnecessary computations within loops (a).

67. Do not use blocks. Use entities instead to describe design hierarchy (a).

68. Use only well tested functions for object-initialization purposes (a).

1.3.4 Explanatory

1. Edit env-files to extend the resource-library list (e).

2. Hide old VHDL files (e).

3. Use an intermediate signal for reading from an output port (e).

4. Multidimesional arrays can lead to mismatch between TRF file and Verilog netlist (e).

5. Component instantiation (e).

6. Spacer cells needed between pads (e).

7. A testbench has neither ports nor generics (e).

8. Store file data to a VHDL variable, if read multiple times (e).

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.3 Rules by Importance 1

15Application Notes

9. Where to use ieee.std_logic_arith and std_developerskit.synth_regpak (e).

10. Where to use std_logic_signed and std_logic_unsigned (e).

11. Array widths for std_logic_arith operators (e).

12. Use conversion functions around arithmetic operators (e).

13. Requirements for resource sharing (e).

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes16

t e c h n o l o g i e s
Infineon

1.4 Rules with Details

1.4.1 Configuration must be in a separated file (m)

With the SC Highway 2.0 the configurations are not any longer anlayzed by Synopsys’ Design
Compiler as in previous HW versions but are used by the SSE environment to extract the depen-
dencies only. Therefore it is necessary to keep a configuration in a separate file, otherwise the
synthesis will fail.

1.4.2 A configuration declaration is needed for each architecture in the
design (m)

A configuration must be used for each component instantiation. This is a requirement imposed by
crvmake . Besides that, simulating unconfigured designs is dangerous, as it is difficult to deter-
mine, which set of architectures is implied. The rule for binding unconfigured entities is: "most
recently analyzed architecture elaborates" (default binding).

Only one level of hierarchy may be configured within one configuration.

 configuration <configuration-name> of <entity-name> is
 for <architecture-name>
 [

 for <instance-name> | all : <component-name>
 use configuration

 work.<name-of-config-to-be-referenced>
 end for;
 ...

]
 end for;

 end <configuration-name>;

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

17Application Notes

Flat configurations (i.e., one configuration for all levels of the model) are useful as a parts list. They
can be derived from hierarchical configurations using, e.g., a Perl script. Flat configurations must
not be used for simulation.

Note that configurations from the current project have to be referenced out of the VHDL library
work, using the logical name work and no other logical name, even if one exists.

Note that generate loops (as well as the non-recommended blocks) require an additional for ... end
for; pair in the configuration:

 configuration fm_struc_withgen of fm is
 for struc --<- architecture name

 for gen_adds --<- generate-loop label
 for accu : add --<- instance name within

 -- generate-loop
 use configuration work.add_rtl_c0

 end for;
 end for;

 end for;
 end fm_struc_withgen;

Configurations must be hierarchical, i.e., instantiated submodules are referenced via their config-
uration. This means that the statement ...use entity... may not occur in any configuration.
In some situations that is not feasible, since the referenced module resides in a VHDL-library other
than work, and has no configuration associated with it:

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes18

t e c h n o l o g i e s
Infineon

❏ Padlib-, starlib-cells

❏ Modules developed externally

In these cases default binding must be used, i.e. omitting the component-configuration for that
instantiation. This is acceptable only if the referenced module has not more than one architecture,
which is the case for pad-, lunar- and memlib. Make sure to include a general use-statement in the
configuration, which allows for Leapfrog-compilation/elaboration without the -compat switch:

 library padlib;
 use padlib.all; --<- make all pads visible

 configuration cli_chip_struc_c0 of cli_chip is
 for struc

 for core : cli_core
 use configuration work.cli_core_struc_c0

 end for;
 -- no component-configuration for the pads here!!!

 end for;
 end cli_chip_struc_c0;

Important: Leapfrog-option -compat is not necessary!!! See chapter 1.4.112 Check for LRM-com-
patibility using cv w/o -compat switch (r) for more information.

1.4.3 Design-internal references must use library work (m)

During chip or core development all VHDL code is compiled into the library work . References to
submodules (i.e., inside configurations) must use the logical library name work:

 ...
 for all: sub use configuration work.sub_rtl_conf;
 ... -- ^^^^

This procedure enables compilation of the VHDL code in other environments without prior modi-
fication. This is the case, if the code shall be re-used as is. It is then compiled into a resource
library, whose logical name can be defined at that point in time.

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

19Application Notes

1.4.4 Edit env-files to extend the resource-library list (e)

If you are instantiating elements out of the resource libraries, the UNIX location must be defined
in startup files:

For Leapfrog the mapping between logical name and UNIX location is done in $HWPROJECT/
env/cds.lib:

 ...
 DEFINE memlib ${HWPROJECT}/resources/memlib/vhdl_rtl/lfobj_2.5
 ...

For Synopsys equivalent definitions are stored in $HWPROJECT/env/
.synopsys_vss.setup:

 ...
 MEMLIB : $HWPROJECT/resources/memlib/vhdl_rtl/

vssobj_$SYNOPSYS_VERSION
 ...

The paths of standard libraries (ieee, synopsys, ...) are preconfigured in the startup files. Do not
switch to the Cadence counterparts (Leapfrog). They are incompatible with the Synopsys libraries,
which are used in the SC-Highway.

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes20

t e c h n o l o g i e s
Infineon

1.4.5 Testbench and DUT should be compiled into the same library (a)

This policy is chosen due to the logical dependency between the testbench and the device under
test (DUT). crvmake can only cover this dependency if both units are in the same library.

1.4.6 Avoid more package references than needed (a)

Each use clause of the form
 use work.mypack.all;

introduces a dependency, that is traced by the makefile generated by crvmake. That means,
changes to that package cause re-compilation of the actual unit. This behaviour is intended. How-
ever, if none of the objects out of mypack are actually used, re-compilation is unnecessary.

Note that only dependences within library work are covered. We still recommend having only rel-
evant references active, even if directed to resource libraries. This makes the code more under-
standable and reusable. Packaging design sources for re-use is made easier.

1.4.7 Use expanded names in binding indications and use clauses only (r)

Dependences between the VHDL files of a design are extracted by the makefile generator crv-
make. It recognizes cross-references at binding indications and use clauses, i.e.

 configuration cli_chip_struc_c0 of cli_chip is
 for struc

 for core : cli_core
 use configuration work.cli_core_struc_c0 --<-

 end for;
 end for;

 end cli_chip_struc_c0;

or
 use work.constants_pack.all; --<-

1.4.8 Keep all objects and subprograms in the nearest possible scope (a)

VHDL objects relevant to one VHDL unit or subprogram should be defined in the nearest scope
possible, i.e. in the declarative region of the respective VHDL unit or subprogram:

 local_proc_example : process
 variable l_v : line;
 procedure local_write_p (-- <---
 arg : in std_ulogic -- <---
) is -- <---
 begin -- <---
 <some_manipulation> -- <---
 write(l_v, arg); -- <---
 end local_write_p; -- <---

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

21Application Notes

 begin
 clk <= '0','1' after period_c/2;
 wait for period_c;
 local_write_p(alarm1_s);
 local_write_p(alarm2_s);
 end process local_proc_example;

In a similar way make sure that types, constants, components and the like are only visible where
necessary. VHDL as a language does not enforce object-oriented style. However, it is possible
with VHDL, as with most programming languages, to still follow object-orientation and avoid global
constructs. Imagine yourself extracting a part of the design as a testcase. With object-oriented
code this task is no problem.

The other rule, which must be followed at the same time, is "single source": Project global infor-
mation may be stored only once. Thus inconsistencies are avoided. An example is the active reset
level. Avoid defining this level locally. Rather put the following in one of the project packages:
 constant reset_active_c : std_ulogic := '0';

Do not use explicit constant values, if the value occurs multiple times. Instead define a constant
with this value, and reference this.

Declare each object as global as necessary, e.g. signals needed for all architectures of an entity
can be declared in the entity, instead of multiple declarations in each of the architectures:

 entity with_signal is
 port (
 clk : in std_ulogic;
 dat_i : in natural range 0 to 15;
 ctl_i : in std_ulogic;
 dat_o : out natural range 0 to 31
);

 signal accu : natural;
 end with_signal;

The signal accu is available to all architectures of entity with_signal. The same is possible with
subprograms.

1.4.9 Keep local objects invisible outside a package (a)

Objects must not necessarily get declared in the package header. If they are used in this package
only, it is advisable to declare them in the body

 package cmfuncs_pack is
 function cm_f (arg : integer) --<- visible with
 return natural; -- the package
 end cmfuncs_pack;

 package body cmfuncs_pack is

 constant accuracy :
 integer := 2; --<- this constant is local to the
 -- package, i.e. visible in the body

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes22

t e c h n o l o g i e s
Infineon

 function cm_shl_f (--<- this function is local
 arg, shft : integer) -- to the package, i.e.
 return integer is -- visible in the body only
 begin
 ... ;
 end cm_shl_f

 function cm_f (arg : integer) return natural is
 function cm_add_f (a, b : integer) --<- this function
 return integer is -- is local to
 begin -- cm_f
 ...
 end cm_add_f;
 begin
 ...
 end cm_f;

 end cmfuncs_pack;

And these are the advantages:

Name space of the unit using the package is not narrowed unnecessarily.

Local subroutines are called from within the package only. Thus the amount of error checking can
be less than for a generic subroutine.

1.4.10 Transfer stable component declarations into components packages
(a)

Prior to instantiation of a component, the component needs to be declared. This can be done in
the architecture declarative region:

 architecture struc of test is
 component comp
 port(...);
 end component;
 begin
 inst: comp
 port map (...);
 end test;

However, if many architectures make use of this component, the declaration is better moved to a
component package. Thus, inconsistencies are avoided. Changes at the component are visible at
the same time to all referencing architectures. Then the instantiating architecture reads, as fol-
lows:

 use work.comp_pack.all;
 entity test ... end test;

 architecture struc of test is
 begin
 inst: comp
 port map (...);
 end test;

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

23Application Notes

To recall the declaration of the component, you may use the tags-mechanism of emacshw. This
mechanism displays the declaration immediately, even if it resides in a different file and directory.

The make utility detects, if a component package has changed. Depending architectures are re-
compiled. Grouping the component declarations into several component packages reduces the
probability of out-of-date conditions. Group components with similar functionality.

1.4.11 Re-use functionality of standard packages as much as possible (a)

Do not re-implement functionality already contained in standard packages. Use the easy-browsing
feature in emacshw menu "VHDL" -> "Browse Packages" to search for a function, procedure or
operator, that serves your needs.

1.4.12 Size of VHDL Units (a)

While the predefinition of block sizes the current version of the synthesis tool should be consid-
ered, in order to take advantage of its optimization and runtime capabilities. Synthesis times and
process sizes get huge, if the blocks are too big. On the other hand avoid tiny blocks, as this would
decrease optimization potential in synthesis (assuming that ungrouping is not used as a general
style). Complexity must be estimated at partitioning, i.e. before mapping. Take the number of reg-
isters times 3 as an estimate.

While partitioning the design make sure that all module-outputs are registered. See "All outputs of
synchronous modules should be registered" for more information.

1.4.13 VHDL units should take into account later floorplanning (a)

A project will run more smoothly, if design hierarchy needs not be changed during floorplanning.
Therefore it is a good idea to target low connectivity between blocks, and to equalize area at the
level of hierarchy, where floorplanning will take place.

1.4.14 Asynchronous parts should be placed into separate entities (a)

Asynchronous units are often subject to re-writing if technology is changed. Furthermore specific
synthesis scripts and careful placement is required.

1.4.15 Structural and behavioural code should not be mixed (r)

If you are separating structural (only component instantiations) and behaviourl (RTL) code clearly,
SSE will only compile the behavioural descriptions, while on the structural levels only a simple link
will be performed. This has two advantages:

A link is much faster than a compile.

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes24

t e c h n o l o g i e s
Infineon

If a submodule changes, only the submodule will be recompiled

In addition, time budgeting is much easier, when you have no mix of structural and behavioural
code. A graphical tool (renoirhw) may be used for generation of structural
code.

1.4.16 Define project packages early in the project (a)

Dependences between the units of a VHDL model should be minimized. This is especially impor-
tant for dependences from package headers. Respecting this rule reduces to a large extent
recompilation time and disturbing interference between project members.
Use several dedicated packages for different topics. Don't mix unrelated functionality, this would
lead to unnecessary dependences. Use any number of packages below around 30. Handling
more packages gets difficult.
Use a separate package for project relevant data types, basic functions, constants, clock periods
and other timing constants. Note, that package header and package body have to be stored in a
single file, if this package is used for synthesized modules.
Start defining project packages at an early stage in the project. A stable setup is important
because typically many VHDL units depend on the project packages.

1.4.17 Submodules referenced by more than one module should be stored
into a separate units-directory (a)

Files containing design units are stored under $HWPROJECT/units/<entity.name>/vhdl/{beh,rtl}.

Submodules of <entity.name> may also be placed in this directory. If the subhierarchy of
<entity.name> contains modules that are referenced by other modules above or beneath
<entity.name> this submodule should be stored in a separate unit-directory. Additionally each
entity should be stored into a separate file. Note that in no case design hierarchy is mapped to the
directory structure.

Files containing packages are stored in $HWPROJECT/vhdl_packs/{beh,rtl}.

1.4.18 Only verified VHDL code allowed for check-in

Only analyzed and verified VHDL code may be checked in as a Clearcase element. Furthermore,
up-to-date comments must be included. This rule must be strictly followed, because corrupt code
gets visible to colleagues immediately. Their crvmake- and smake-runs would then
fail.

By chance this situation may occur. In this case, advise your colleagues to temporarily generate
their makefiles using
 crvmake ... $HWPROJECT/units/{a,b,c, ...}/vhdl/{rtl,tb}/*.vhd

a, b, c, etc. are units which they need at the moment excluding the faulty units that have been
checked in unintentionally.

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

25Application Notes

1.4.19 Store each VHDL unit into a separate file (r)

To avoid reanalysis of VHDL units (entity, architecture), which are not affected from a source code
change, you should create separate files for the entity and the corresponding architectures. Espe-
cially, when you have more than one architecture for an entity, it is necessary to have them sepa-
rated in different files.

Nevertheless, if VHDL units are not separated in different files, only related VHDL units (entity, cor-
responding architecture) may be combined in one file.

However with the SC HW version 2.0 all configurations must be located in a separate file.
Part 1.4.1, “Configuration must be in a separated file (m)”

1.4.20 Store package header and body into same file (m)

Packages are stored in $HWPROJECT/vhdl_packs/{rtl,beh} . For these packages header
and body must be stored into one file due restrictions of Design Compiler.

1.4.21 Hide old VHDL files (e)

VHDL files from experiments and old VHDL files need to be hidden from the makefile generator
crvmake. Such experimental code is very often unclean. crvmake might easily fail and the speed
for makefile generation might degrade.

To hide the code you may chose to either

Rename the file tovhd.old

Remove the file using ct rmnamevhd

The second solution is the preferred one. The original experimental file can be retrieved using a
Clearcase configuration specification like

 element * CHECKEDOUT
 element * /main/LATEST -time yesterday

Instead of yesterday any other date in the past may be used.

As temporary workaround, you may select VHDL-files for makefile-generation using commands
like:

 crvmake $HWPROJECT/units/{a,b,c}/vhdl/rtl/*.vhd \
 $HWPROJECT/vhdl_packs/rtl/*.vhd

Old or experimental VHDL files are thus hidden from the compilation process.

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes26

t e c h n o l o g i e s
Infineon

1.4.22 All primary unit names must be unique in the project library (m)

Entities and configurations are primary VHDL units. Potential naming conflicts must be avoided
through project agreements. In case of cooperation with subcontractors, primary unit name usage
must be coordinated with them as well. If their units are delivered in precompiled form, name
clashes could be resolved by using a separate VHDL library, which offers a new name space. Nev-
ertheless, we recommend strongly not relying on this possibility, because it is working for simula-
tion only. Name space overlap cannot be resolved in synthesis with Design Compiler.

1.4.23 Example for unit and file naming conventions

 VHDL unit name file name

Entity : stm4_1 stm4_1-e.vhd
Architecture : rtl stm4_1-rtl-a.vhd
Configuration : stm4_1_rtl_hier stm4_1-rtl-hier-c.vhd
Testbench entity : stm4_1_tb stm4_1_tb-e.vhd
Testbench arch. : beh stm4_1_tb-beh-a.vhd
Testbench conf. : stm4_1_tb_beh_c0 stm4_1_tb-beh-c0-c.vhd
Package : arith_pack arith_pack-p.vhd

1.4.24 Abbreviations for naming conventions

<e.id> := <entity.identifier>
<a.id> := <architecture.identifier>
<c.id> := <configuration.identifier>
<t.id> := <testbench.identifier>
<e.id.dut> := <entity.identifier.of.device.under.test>
<p.id> := <package.identifier>

1.4.25 Naming conventions for VHDL units (a)

The following conventions are recommended:
 <entity.name> := <e.id>
 <architecture.name> := <a.id>
 <configuration.name> := <e.id>_<a.id>_<c.id>
 <package.name> := <p.id_pack>

(See the definition of "Abbreviations for naming conventions") The same rules apply to test-
benches. An additional rule makes sure, that the units are easily identified as testbench constitu-
ents:

 <e.id> := <e.id.dut>_<t.id>

Multiple testbenches for one DUT are created using different <t.id>s.

The architecture names need no longer be prefixed using <e-id> because crvmake can now han-
dle equal architecture names, as long as they are related to different entities.

Multiple architectures for one entity are created using different <a.id>s.

The architecture name should indicate the abstraction level, e.g.

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

27Application Notes

 <a.id> := rtl | behavioural | dataflow | structural | verilog

Multiple configurations for one entity are created using different <c.id>s.

The configuration name may indicate the type of configuration, e.g.
 <c.id> := c0 | test1 | leaf

Configurations are primary units. Their names need to be unique in the library. This is accom-
plished using the above-mentioned rule. Furthermore it is possible to judge from the configuration
name, what entity and what architecture it refers to. Thus, simulation and synthesis jobs can be
specified easier.

Should a package be related to a single unit, this can be clarified by using <p.id> :=
<e.id>. See an example for the naming conventions.

1.4.26 Naming conventions for VHDL files (a)

The following file names are recommended for storing VHDL units:
 Entity : <e.id>-e.vhd
 Architecture : <e.id>-<a.id>-a.vhd
 Entity & Arch. : <e.id>-<a.id>-ea.vhd
 Configuration : <e.id>-<a.id>-<c.id>-c.vhd
 Entity & Arch. & Conf. : <e.id>-<a.id>-<c.id>-eac.vhd
 Package Header : <package.name>-h.vhd
 Package Body : <package.name>-b.vhd
 Package Header & Body : <package.name>-p.vhd

Note that the identifiers are separated by dashes. Identifiers themselves can contain underscores
but not dashes. Thus, the reader can easily judge from the file name, where the identifiers end.
SC-Highway tools do not depend on this filename convention. Arbitrary file names can be chosen,
but with the disadvantage of poor readability.

Uniqueness of file names may not depend on different casing of the names. We strongly recom-
mend that lowercase file names be generally used.

1.4.27 Naming conventions for VHDL objects (a)

Suffixes indicate the kind of a given identifier.
 input ports : *_i data_i
 output ports : *_o data_o
 bidirectional ports : *_b data_b
 signals : * data
 variables : *_v data_v
 constants : *_c load_mem_c
 generics : *_g bit_width_g
 functions : *_f gen_table_f
 procedures : *_p check_timing_p
 (sub-)types : *_t stm4_t
 enum. literals : *_e start_state_e
 global signals : *_global TestMode_global
 clock signals/ports : *clk*|*clock* clk155
 reset signals/ports : *res*|*rst* cpu_reset

 inverted logic object : *_n* ena_ni

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes28

t e c h n o l o g i e s
Infineon

The port suffixes _i, _o, _b may be omitted on the top level of a chip or a core. At this level, the port
names should equal the names that are used in the datasheet of the chip or core.

Using these suffixes helps in understanding expressions, without searching the declarations that
are involved. Remember that these declarations might be located in other files even.

 rtpt_o <= shl_f(iir_rsum, wi_c - wo_g);

Thus, it is easy to tell which parameter is a signal, which is a constant, etc. When it comes to a
more in-depth analysis of the types, then the declarations must be sought (e.g. using the tags-
mechanism in emacshw).

1.4.28 Identifier naming must be based on English language (m)

This restriction will help to transfer code worldwide, e.g. for VHDL code of reusable cores or for
cooperation of international project teams.

 load_memory --<- preferred
 lade_speicher --<- do not use

1.4.29 Use meaningful identifier names (a)

Identifier names should indicate the object's purpose, and not the type of the object:
 count_frames --<- preferred

 integer_count --<- do not use

Less than 15 characters are recommended. Use compound names, preferably separated by
underscores ('_'). Start with the most important component and append less important compo-
nents. Identifiers that are used within a wide scope should be rather long. Those being used in a
narrow scope should be rather short.

1.4.30 Signal assignments for renaming purposes should be avoided (a)

The name of a signal should be the same at all places of its occurrence. This makes code more
understandable. This rule shall be followed even across hierarchy boundaries as far as possible
and especially for clock signals. That does not apply to signals used in a very narrow scope,
because one person handles these usually.

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

29Application Notes

The other reason for this rule is the following. Each signal assignment infers a delta for events trav-
eling on this path. That means, for each event on the source a new one is scheduled on the target
signal. The behaviour is correct, but consumes computation power for nothing.

1.4.31 Choose short instance names (a)

Pin- and cell-names must be handled in debuggers, waveform-viewers, SDF-files, etc. These
names are built relative to the top-module using hierarchy-separators. Short instance names will
turn the complete pin- and cell-names into shorter ones that are easier to handle.

 counter --<- preferred
 counter_to_count_all_incoming_ones --<- do not use

1.4.32 Keyword casing should be uniform in all VHDL code (a)

Casing of keywords should be uniform in all VHDL code. Use uppercase or lowercase. Uppercase
keywords are not prescribed, since visual emphasis of keywords can be achieved using color
modes in the editor. Pretty printers perform this emphasis in printouts.

1.4.33 Identifier casing should be uniform in all VHDL code (r)

Mixed casing can be used for better readability of identifiers. But it must be consistent in all VHDL
code. To achieve consistent casing, dynamic completion in emacshw can be used: Start typing the
identifier and then type TAB. emacshw will complete the identifier with the casing, that has already
been used in the file.
Entity names must be equal to the design-names used in the synthesis scripts and in the synthesis
script names, including case:

 entity mux is ...

 mux.rscr <-- this script gets invoked
 Mux.tscr <-- this script is not invoked

 Inside one of the scripts:

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes30

t e c h n o l o g i e s
Infineon

 current_design = MUX /* will fail */

Lowercase entity names are strongly recommended.

1.4.34 Separate identifier components using underscores (a)

There are two techniques to separate identifier components: Mixing case and using the under-
score character ('_') within identifiers. The second technique is preferable. The advantage is that
identifier components can be separated even after synthesis and backend steps. Recognizing pin-
, net- or cell-names this way is a great help in case of debugging. With mixed casing, this may
become impossible due to case unification by the netlist writers.

 data_to_mux --<- preferred
 dataToMux --<- do not use

Do not use underscore to separate numbers in identifiers:
 bus2, bus3, bus4 --<- preferred

 bus_2, bus_3, bus_4 --<- do not use

1.4.35 Trailing and consecutive underscores are not allowed in identifiers
(m)

Such occurrence of underscore is misinterpreted as bus- or hierarchy-delimiter in some netlisters
and netlist-readers.

1.4.36 Use an intermediate signal for reading from an output port (e)

Reading directly from output ports is not possible in VHDL. Use an intermediate signal following
this convention:

 <port-name> = <prefix_o>
 <signal-name> = <prefix>

Example:
 port (

 memdat_i : in std_ulogic_vector (7 downto 0);
 memadr_i : in std_ulogic_vector (9 downto 0);
 memdat_o : out std_ulogic_vector (7 downto 0));

 ...
 architecture xmpl ...

 signal memdat: std_ulogic_vector (7 downto 0);
 begin

 ...
 check_memdat(memdat); --<- concurrent procedure

 -- reading output signal
 memdat_o <= memdat; --<- driving the output port
 ...

 end xmpl;

Another solution for reading from output ports would be using port mode buffer. However, port
mode buffer is not recommended, see "Do not use port modes buffer and linkage".

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

31Application Notes

1.4.37 Use standard top-levels xmpl, xmpl_top, and xmpl_chip (r)

The three units highest in the design hierarchy must comply with the following naming rules, with
xmpl being a placeholder for the actual design-name:

The suffix _top is fix by BSDA, the boundary scan generator. It cannot be configured. If boundary
scan is not applied to the chip, the unit xmpl_top is omitted.

The suffix _chip is a naming convention, which is not strict but recommended for common style in
Infineon Technologies designs.

1.4.38 Length of entity names should not exceed 32 characters. (r)

As the netlist reader of Aquarius is not able to handle more than 32 characters for design names,
longer names get shorten during the write-backend-info-step in SSE. This causes problems in the
links-to-layout flow, as you have to use the new design names for generating the custom-wire-load
library, but for resynthesis you have to use the original names, which requires some manual cor-
rections of the automatically generated files. You can avoid these problems by using a maximum
length of 32 characters for entity names.

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes32

t e c h n o l o g i e s
Infineon

1.4.39 Unresolved data types std_ulogic(_vector) are recommended (a)

The motivation for this recommendation is to avoid short-circuit errors. These may easily occur if
a signal of resolved type is assigned twice:
 reg: process (clk, res)
 begin -- reg
 if res=reset_active_c then
 outbit <= '0';
 elsif clk'event and clk='1' then
 outbit <= ctl; --<- ----------------------,
 end if; \
 end process reg; |
 -- ... --<- lots of code here |
 outbit <= ctl; --<- overlooked, that 'outbit' has
 -- been assigned before

The result of such description is a short-circuit in the synthesized netlist as well as simulation
behaviour, which is not intended:

Make sure that this situation does not occur unintentionally by checking
the file $HWPROJECT/units/test/synthesis/reports/<unit>.chk_dsn
for messages like
 *** CHECK DESIGN ***
 Warning: In design 'test', input port 'ctl' drives wired logic.
 (port-direction may have been specified incorrectly.) (LINT-6)
 Warning: In design 'test', three-state bus 'ctl' has
 non three-state driver 'outbit_reg/Q'. (LINT-34)

This procedure is cumbersome and insecure. Therefore unresolved logic types are recom-
mended, which make all compilers warn about the multiple drivers, e.g. smake -cve issues the
following message:
 outbit <= ctl;
 -------^
 E L35/C8: multiple sources were detected for
 unresolved signal outbit

The package ieee.std_logic_1164 has defined appropriate types:
 type std_ulogic is ('U', 'X', '0', '1',...);
 type std_ulogic_vector is array ... of std_ulogic
 function resolved (s: std_ulogic_vector)
 return std_ulogic;
 subtype std_logic is resolved std_ulogic;

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

33Application Notes

 type std_logic_vector is array ... of std_logic

std_ulogic(_vector) is designed for single driver, whereas std_logic(_vector) can
handle multiple drivers. For modeling three-state drivers and for connecting bi-directional signals,
resolved types may be used without danger. For correct inference of three-state-buffers the
assignments must be changed compared to the code above:

 signal a : std_logic_vector(4 downto 0); --<- use resolved
 -- type for 3-state-bus
 ...
 a <= ctl_i when ena = '1' else 'Z'; --<- 3-state-driver
 ...
 a <= mode when enb = '1' else 'Z'; --<- 3-state-driver

See "Avoid internal three-state busses unless absolutely necessary" for more information.

One small drawback of using unresolved types is the need for conversion functions at arithmetic
operators and subprograms. Related rule: "Use conversion functions around arithmetic opera-
tors".

For single bits, however, no conversion function is needed, because std_logic is a subtype
of std_ulogic:
 type std_ulogic IS ('U', -- Uninitialized
 'X', -- Forcing Unknown
 '0', -- Forcing 0
 '1', -- Forcing 1
 'Z', -- High Impedance
 'W', -- Weak Unknown
 'L', -- Weak 0
 'H', -- Weak 1
 '-' -- Don't care
);
 ...
 subtype std_logic IS resolved std_ulogic;
 ^^^^^^^

Note, that the situation is different for vectors, std_logic_vector is a separate type and
std_ulogic_vector is a separate type:
 type std_ulogic_vector is
 array (natural range <>) of std_ulogic;
 ...
 type std_logic_vector is
 array (natural range <>) of std_logic;
 ^^^^

Therefore conversion is necessary for vectors.

The other motivation for rare use of resolved std_logic(_vector) is the fact that the sim-
ulator's resolution functions consume some computation power.

1.4.40 Data types at chip and macro ports: std_(u)logic(_vector) (m)

All other types (e.g. records and multi-dimensional arrays) cannot be represented accurately in
Verilog. They create problems in the Highway flow and if the design shall be turned to a hard
macro later. So, this rule shall serve for easier integration and re-use of chip-designs and soft mac-
ros into new chip designs. It is therefore applicable to all modules, whose re-use is forecasted. If
resolved and unresolved array types are mixed (related rule: "Unresolved data types ... recom-
mended") type conversion is necessary:

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes34

t e c h n o l o g i e s
Infineon

 signal cvm2_unres : std_ulogic_vector(2 downto 0);
 signal cvm4_unres : std_ulogic_vector(2 downto 0);
 signal cvm2_res : std_logic_vector(2 downto 0);
 signal cvm4_res : std_logic_vector(2 downto 0);
 ...
 fil_blk1: rtpt18 -- component with unresolved ports
 port map (
 d_i => cvm2_unres,
 d_o => cvm4_unres,
 ...
);

 -- connecting up signals and converting types
 -- using type marks

 -- to fil_blk1
 cvm2_unres <= std_ulogic_vector(cvm2_res);
 -- to fil_blk2
 cvm4_res <= std_logic_vector(cvm4_unres);

 fil_blk2: cvmtv18
 port map (
 d_i => cvm4_res,
 d_o => cvm2_res,
 ...
);

Type marking as an easy form of type conversion is possible between closely related array types,
i.e. type that are built on the same base type, std_ulogic in our case. Type marks do not consume
simulation performance. They are resolved at compile time.

Note, that type marking is not necessary to connect std_ulogic with std_logic (single bits),
because the latter is a subtype of the former:

 fil_blk1: rtpt18
 port map (
 ...
 flag_bit_o => flag_bit, -- to fil_blk2 ------,
 ... -- \
); -- |
 -- |
 fil_blk2: cvmtv18 -- |
 port map (-- |
 ... -- /
 flag_big_i => flag_bit, -- from fil_blk1 <---'
 ...
);

The connecting signal flag_bit can be either of std_logic or std_ulogic type. This does not work
with std_(u)logic_vector, because arrays cannot be declared as subtypes.
ieee.std_logic_1164 recalled:
 subtype std_logic is resolved std_ulogic;
 type std_logic_vector is array (natural range <>)
 of std_logic;

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

35Application Notes

Note that type conversion can also be performed directly in the port map. An explicitly declared
function must be used instead of the type mark. Additionally this function must not expect more
than one parameter:
 fil_blk3: rtpt18
 port map (
 ...
 d_i => to_stdulogicvector(cvm2), --<- input dir.
 to_stdlogicvector(d_o) => cvm4, --<- output dir.
 ...
);

The functions used stem from the package ieee.std_logic_1164 . For the input direction the
actual parameter gets converted, for the output direction the formal parameter gets converted.
This technique cannot be used at outputs, if the code is going to be synthesized. Therefore, we
recommend to use separate type marked assignment statements generally, as described above.

Related rule: "Data types at module ports: std_(u)logic(_vector) recommended".

1.4.41 Data types at module ports: std_(u)logic(_vector) recommended (a)

The strict rule "Data types at chip and macro ports: std_(u)logic(_vector)" does not apply to the fol-
lowing modules:

Modules developed and maintained by one designer

Modules developed and maintained by a design team, which is working closely together

At these interfaces, other data types than std_(u)logic(_vector) may be used as well.
Make sure that these are synthesizable data types, if the module is going to be synthesized
(related rule "Data types must be synthesizable"). This is also important if the module architecture
is behavioural, but a synthesizable version is planned.

If the module will be synthesized as a sub-block, any of the types described in rule "Data types
must be synthesizable" may be used. However, if the synthesized netlist of this module shall be
verified against its RTL or behavioural description, then std_(u)logic(_vector) is advisable
from the beginning. If this type is chosen for ports, then the automatic shell generation facility can
be used. This shell allows for simulating the module together with the existing testbench or in the
RTL surroundings.

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes36

t e c h n o l o g i e s
Infineon

If types other than std_(u)logic(_vector) are used for ports, the co-simulation shell must be cre-
ated by hand. Conversion functions must be used to connect up the netlist.

Important to note, that this recommendation addresses port types only. Inside architectures, you
are advised to make extensive use of abstract data types (related rule: "Use complex data types
inside architectures"). This is also possible to a wide extent, even within the synthesis subset
(records, integer, enumeration types ...).

1.4.42 Use complex data types inside architectures (a)

Complex or abstract data types are e.g. complex numbers for signal samples, record structures for
data frames, arrays of arrays for memories, etc. These types are preferred in architectures for sev-
eral reasons:

Abstract types make the model more compact and thus easier to understand

Therefore the model is better maintainable and re-usable

The model will simulate faster. E.g. integer operations are carried out on the workstation proces-
sor directly.

For circuit models that will be synthesized

Make sure that abstract types match the synthesis subset, e.g. linked lists are not synthesizable.

Use range constraints on integers, otherwise 32 bit will be synthesized

Use integers as long as bit operations do not dominate the functionality. Otherwise make use of
the package ieee.std_logic_arith and the types signed and unsigned therein.

To connect up to the module ports type conversions are required:
 port (
 ctrl_i : in std_ulogic_vector(wctrl_c-1 downto 0);
 ...
 signal ctrl : ctrl_record_t;
 ...
 ctrl <= --<- input
 conv_ctrl_vector_to_record_f(ctrl_i); --<- conversion
 ...
 sig1 <= sigvec(ctrl.select); --<- inside arch. use
 -- complex types

For closely related array types, type marks may be used.

Related rule: "Data types must be synthesizable".

1.4.43 Use a small number of self-defined global data types (a)

Global types are types being used by more than one designer. Such types must be well main-
tained. I.e. documentation, conversion functions and other subprograms working on this type need
to be provided, typically through packages. This project-wide work can only be done for few such
types.

This recommendation does not apply to local types. Types can be local to architectures, pro-
cesses, functions, etc.:
 ctrl: process (clk, res)

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

37Application Notes

 type state_t is --<- local to
 (RESET, WAKEUP, SYNCD, INT); -- process
 function upd_mem_f (addr : integer)
 return integer is
 type memstate_t is --<- local to function
 (FILLED, INITD);
 begin
 ...
 end upd_mem_f;
 begin
 ...

Local types should be used intensively for an increase of readability. For description of states use
enumeration types rather than logic types, as std_ulogic_vector.

1.4.44 Self-defined conversion functions must assert un-mappable input
values (m)

A constant (conv_unmappable_messages_off_c) may be used to disable
assertions
 function hex_to_int_f (variable c_v : in character)
 return integer is
 variable res_v: integer;
 begin
 case c_v is
 when '0' => res_v := 0;
 when '1' => res_v := 1;
 ...
 when 'E' => res_v := 14;
 when 'F' => res_v := 15;
 when others => res_v := 0; --<-
 assert conv_unmappable_messages_off_c --<-
 report "hex_to_int_f ERROR: " & --<-
 "char. not valid, mapped to 0." --<-
 severity error; --<-
 end case; -- c_v
 return res_v;
 end hex_to_int_f;

The assert statement is activated, when the condition
(conv_unmappable_messages_off_c) evaluates to false. Choose false
as default value for conv_unmappable_messages_off_c.

1.4.45 Multidimesional arrays can lead to mismatch between TRF file and
Verilog netlist. (e)

Multidimensional arrays lead to escaped names in the Verilog netlist, as there are no multidimen-
sional arrays in Verilog, e.g.:

\bus_xy[2][4]

If you have set constraints on such an array, this name will also appear in the TRF file. During the
write-backend-info-step in SSE the bus naming style in the TRF file is changed from [] to <>. Unfor-

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes38

t e c h n o l o g i e s
Infineon

tunately – due to a bug in SSE – the names of the multidimensional arrays are changed, too. This
leads to a mismatch between the TRF file and the Verilog netlist. Until this is fixed in a future
release of SC Highway, you should not use multidimensional arrays. If you use them, you will only
run into this problem, if you are setting constraints on this array. In this case, you will have to cor-
rect the TRF file by hand.

See also:

Data types at chip and macro ports: std_(u)logic(_vector)

Data types at module ports: std_(u)logic(_vector) recommended

1.4.46 Avoid gated clocks unless absolutely necessary (r)

Logic within the clock line may be used under two circumstances, only:

Clock gating for power saving.

Static clock multiplexing for fabrication test.

Instances of clock logic must be communicated precisely to the layout engineer for proper clock
tree synthesis. Rare usage of gated clocks is recommended due to the fact that handling of these
gates in clock tree synthesis is critical wrt. accuracy and involves hand-crafting, which is always
error-prone.

At the modeling stage, special care is necessary, since delta races easily infer functional pre-/
post-synthesis mismatches. Such mismatches are detected by formal comparison (CVE) or
proper simulation pattern. Please refer to the related rule: "Balance clock to delta accuracy".

Outlook: Most probably there will be a technique available in the future to infer gated clocks where
the clocked processes have enable-behaviour:
 enreg: process (clk, res)
 begin
 if res=reset_active_c then
 outbit <= '0';
 elsif clk'event and clk='1' then
 if enable then
 outbit <= ctl;
 end if;
 end if;
 end process enreg;

Such circuit description needs not take into account clock gates. An elaboration switch allows for
propagation of the enable into the clock path. Thus, clock gates can be inferred for a power-saving
implementation, whereas another implementation utilizes the enable directly. Both implementa-
tions are derived from the same VHDL source. However, it must be clarified whether inference
works with Starlib, and how to handle the multitude of inferred clock gates in place & route.

1.4.47 Avoid latches unless absolutely necessary (r)

Testability problems are likely to occur with latches. For ATPG, latches need to be switched to
transparent mode, in order to allow for scan testing the rest of the circuit. For the latch itself ded-
icated test-vectors need to be developed, which is not an easy task.

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

39Application Notes

Unintended latch-inference may happen with combinational processes that
do not drive their output signals under every possible condition:

 xmpl_sig: process(mode0, sig)
 begin
 if mode0 = "00" then
 sig <= sig1 + 1;
 elsif mode0 = "01" then
 sig <= 12; -- cases mode0 = "10", "11" not covered
 end if; -- could be covered in an else clause
 end process xmpl_sig;

Check the elaboration logfile $HWPROJECT/units/*/synthesis/logfiles/
<unit>_elab.log to recognize this situation:
 Inferred memory devices in process 'xmpl_sig'

 in routine test line 92 in file
 '/home/hwpro/hw_alarm_chip/vob/units/test/...
 ...vhdl/rtl/test-rtl-a.vhd'.

 ===
 | Reg.Name | Type | Width | Bus | AR | AS | SR | SS | ST |
 ===
 | sig_reg | Latch | 4 | Y | N | N | - | - | - |
 ===

 sig_reg (width 4)

 reset/set: none

Furthermore there is a warning issued by ssemake:
Elaboration of /home/hwpro/hw_alarm_chip/vob/project_lib/gdbs/test.db

 finished on erle at Thu Dec 18 19:13:53 MET 1997
 Warning: Latches are inferred during elaborate (SSE).
 Check logfile: logfiles/test_elab.log (SSE).

To remove the latch, you may add an else-clause:
 xmpl_sig: process(mode0, sig)
 begin
 if mode0 = "00" then
 sig <= sig1 + 1;
 elsif mode0 = "01" then
 sig <= 12;
 else --<- else clause
 sig <= 0; --<- prevents latch inference
 end if;
 end process xmpl_sig;

or introduce a default assignment:
 xmpl_sig: process(mode0, sig)
 begin
 sig <= 0; --<- default assignment
 -- prevents latch inference
 if mode0 = "00" then
 sig <= sig1 + 1;
 elsif mode0 = "01" then
 sig <= 12;
 end if;
 end process xmpl_sig;

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes40

t e c h n o l o g i e s
Infineon

1.4.48 Reset is mandatory for sequential processes (m)

Reset at sequential processes lets synthesis infer reset-able flip-flops into the netlist:
 reg: process (clk, res)
 begin -- reg
 if res=reset_active_c then --<- reset branch
 outbit <= '0'; --<- reset branch
 elsif clk'event and clk='1' then
 outbit <= ctl;
 end if;
 end process reg;

This is an important prerequisite for rapid resetting of the whole circuit at fabrication test, for ATPG
and for simulation initialization.

There are several advantages for asynchronous reset and several for synchronous. The complete
discussion is not unrolled here.

Asynchronous reset is recommended for fabrication test without any logic in the reset tree. Thus
the reset signal is not timing-critical. Clock can be disabled on the tester during the reset process.
Under these circumstances the reset tree can be buffered in synthesis.

With the respective template given under "Use standard templates for clocked processes" it is
granted that the reset tree is connected to the respective reset pins of the flip-flops. Check the
elaboration logfile $HWPROJECT/units/*/synthesis/logfiles/
<unit>_elab.log to make sure that the desired set or reset has
been implemented:
 Inferred memory devices in process 'reg'

 in routine test line 79 in file
 '/home/hwpro/hw_alarm_chip/vob/units/test/...
 vhdl/rtl/test-rtl-a.vhd'.
 ==
 | Reg.Name | Type | Width | Bus | AR | AS | SR | SS | ST |
 ==
 | outb_reg | FF | 1 | - | Y | N | N | N | N |
 ==

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

41Application Notes

 ^^^^^^^^^^^^^^^^^^^^^^^
 outb_reg

 Async-reset: res'
 ^^^^^^^^^^^

In-system reset functionality be separated from the above-mentioned reset for fabrication test. It
can be combined with the other functional logic:
 reg: process (clk, res)
 begin -- reg
 if res=reset_active_c then --<- async. reset for
 outbit <= '0'; --<- fabrication test
 elsif clk'event and clk='1' then
 if synres=synres_active_c then --<- sync. reset for
 outbit <= '1'; --<- system operation
 else
 outbit <= ctl;
 end if;
 end if;
 end process reg;

Note that the multiplexer is merged with the other input logic by synthesis, which is not described
here.

Refer to rule "Use standard templates for clocked processes" for an example of asynchronous and
synchronous reset.

1.4.49 All outputs of synchronous modules should be registered (r)

This makes time budgeting much easier. Timing constraints are to be defined at the unit boundary.
Thus the surroundings of the currently synthesized unit are described. A standard constraint set
can be applied if the neighbour units have registered outputs: The outer input delay-budget can be
modeled quite realistically to 2 ns. The outer output delay-budget is best modeled to clock-
period - 2 ns.

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes42

t e c h n o l o g i e s
Infineon

Realistic modeling of the surroundings of a unit being synthesized is important for the synthesis
process. The created logic is adapted to these assumptions. If it turns out that these assumptions
were not right, problems will occur, when connecting the units.

Refer to rule "The sensitivity list of clocked processes..." for an example of clocked processes.

1.4.50 Use gate instantiation only at few instances (r)

It is desirable to create circuit descriptions independent from technology, as far as possible. Thus
transition to next generation technologies is made easier and re-usability in other projects is
improved. However instantiation is necessary in the following cases:

❏ Pad-instantiation

❏ High-performance RAM-control

❏ Clock-gating

❏ IO-timing adjustment

❏ Bus-holding

❏ etc.

There are different ways to instantiate gates and cells:

Option 1 : Instantiate gtech gates, technology independent, Synopsys-dependent. This procedure
is not preferred due to the dependence on Synopsys.
 library gtech; --<- make comp.
 use gtech.gtech_components.all; --<- decl.avail.for
 -- instantiation
 entity inst_xmpl is
 ...

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

43Application Notes

 end inst_xmpl;

 architecture struc of inst_xmpl is
 ...
 add: gtech_add_abc port map(--<- instantiation
 a => a,
 b => b,
 c => c,
 s => s,
 cout => car);
 ...
 end struc;

 library gtech; --<- make entity and arch.
 use gtech.all; --<- available for default binding

 configuration inst_xmpl_struc_cdef of inst_xmpl is
 for struc
 -- binding omitted for instance "add"
 -- default binding allowed, because only
 -- one architecture available in library gtech.
 end for;
 end inst_xmpl_struc_cdef;

Option 2 : Bind a specific cell or design to a function or procedure. Thus it is possible to not only
force the type of the cell but as well the drive strength. This technique is necessary in extremely
rare cases. In general the optimization of Design Compiler much better determines the type and
drive strength of the required cells. However, if this technique has been applied, make sure that
Design Compiler does not re-arrange the design, or resize the driver strengths. This is best
achieved when the cell-references are placed in a separate entity, for which the command compile
is then inhibited. link is sufficient.

 architecture rtl of test is

 function and_f (A, B : std_ulogic) --<- *
 return std_ulogic is
 -- pragma map_to_entity LAN2B --<- *
 -- pragma return_port_name Z --<- *
 -- * = case sensitive cell and pin names
 begin -- and_f
 return a and b;
 end and_f;

 begin -- rtl

 d <= and_f(x,y);

 end rtl;

Note that cell/design-name and pin-names must have the same casing as in the Synopsys Design
Compiler, i.e. "LAN2B", "A", "B", "Z" in the given example.

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes44

t e c h n o l o g i e s
Infineon

The technique must be used with extreme care. Inconsistencies are very likely to happen,
because the VHDL-function and the cell function are specified in different places (VHDL and
library). Netlist versus RTL comparison is absolutely mandatory, e.g. by using formal verification
(CVE).

The advantage of this technique is independence from the VHDL-simulation models of the cells.
It might therefore be used in models, which must be exchanged with external cooperation part-
ners, who do not have the respective library in-place.

Option 3 : Instantiation of starlib- or padlib cells. As with the previous technique, cell-references
must not be mixed with other RTL-code. Pin- and cell-name casing must not necessarily match,
because the VHDL analyzer resolves the reference.
 library starlib;
 use starlib.starlib_components.all;

 entity test is

 port (a_i : in std_ulogic;
 b_i : in std_ulogic;
 z_o : out std_ulogic);

 end test;

 architecture rtl of test is
 begin -- rtl

 and : LAN2B port map(
 a => a_i,
 b => b_i,
 z => z_o);

 end rtl;

 library starlib;
 use starlib.all;

 configuration test_rtl_cdef of test is
 for rtl
 -- binding omitted for instance "and"
 -- default binding allowed, because only
-- one architecture available in starlib
 end for;
 end test_rtl_cdef;

This is the technique of choice for pad-instantiation.

Option 4 : Using boolean operators in the VHDL code to force a certain logical structure:
 architecture rtl of test is
 begin -- rtl

 z <= (a or b) xor b;

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

45Application Notes

 end rtl;

To avoid logic restructuring, the following scripts are required under $HWPROJECT/units/
<unit>/synthesis/scripts .
 <unit>.rscr:
 set_dont_touch find(cell, "*")

 <unit>.iscr:
 remove_attribute find(cell, "*") dont_touch
 compile -incre

Without these scripts logic optimization produces one LAN2I:

whereas with the scripts the original structure is resembled: LOR2P, LEOP:

The drive capabilities are optimized according to the given constraints.

1.4.51 Avoid internal three-state busses unless absolutely necessary (r)

Internal three-state signals are difficult to handle at fabrication test and during constraining for
logic synthesis. An alternative is using a multiplexer solution. Depending on the number of chan-
nels, this may result in high net areas and problems during routing. Use internal three-state bus-
ses only if such routability problems are obvious.

Generate three-state buffers using the following concurrent statement (template):
 bus <= ram_dat when ena = '1' else (others => 'Z');

Furthermore, instantiate a busholder-cell using option 2 or 3 described in "Use gate instantiation
only at few instances".

At the moment 'Z' must be changed temporarily to '0' for processing with CVE. This is no longer
necessary for SC-Highway V1.0.1 and higher (new CVE version).

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes46

t e c h n o l o g i e s
Infineon

1.4.52 Component instantiation (e)

VHDL provides different ways of instantiating components. In the following, there are some exam-
ples (all of them can be compiled for Leapfrog without the -compat switch):

Instance of component out of library WORK:
 library IEEE;
 use IEEE.std_logic_1164.all;
 entity inst_xmpl is
 ...
 end inst_xmpl;

 architecture struc of inst_xmpl is
 ...
 add: add_abc port map(
 a => a,
 b => b,
 c => c,
 s => s,
 cout => car);
 ...
 end struc;

 configuration inst_xmpl_struc_conf of inst_xmpl is
 for struc
 for add|all: add_abc
 use configuration work.add_abc_rtl_conf;
 end for;
 end for;
 end inst_xmpl_struc_conf;

Instance of component out of library XY_LIB (e.g. starlib, padlib, memlib etc.) without configura-
tion:
 library IEEE;
 use IEEE.std_logic_1164.all;
 library xy_lib
 use xy_lib.components.all;
 entity inst_xmpl is
 ...
 end inst_xmpl;

 architecture struc of inst_xmpl is
 ...
 inst: macro port map(-- or xy_lib.components.macro port map(
 a => a,
 b => b,
 c => c,
 s => s,
 cout => car);
 ...
 end struc;

 library xy_lib;

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

47Application Notes

 use xy_lib.all;

 configuration inst_xmpl_struc_conf of inst_xmpl is
 for struc
 end for;
 end inst_xmpl_struc_conf;

Instance of component out of library XY_LIB (e.g. starlib, padlib, memlib etc.) with configuration:
 library IEEE;
 use IEEE.std_logic_1164.all;
 library xy_lib
 use xy_lib.components.all;
 entity inst_xmpl is
 ...
 end inst_xmpl;

 architecture struc of inst_xmpl is
 ...
 inst: macro port map(-- or xy_lib.components.macro port map(
 a => a,
 b => b,
 c => c,
 s => s,
 cout => car);
 ...
 end struc;

 configuration inst_xmpl_struc_conf of inst_xmpl is
 for struc
 -- pragma translate_off
 for inst|all: macro
 use configuration xy_lib.inst_rtl_conf;
 end for;
 -- pragma translate_on
 end for;
 end inst_xmpl_struc_conf;

1.4.53 Avoid snake paths (r)

Snake paths are timing paths that travel through many units in the design hierarchy without being
registered. Such paths must be avoided, because they are error prone and difficult to constrain
appropriately.

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes48

t e c h n o l o g i e s
Infineon

This problem does not occur, if module outputs are registered in general. However, this is probably
not feasible for all outputs. If there are only few exceptions (max. 10 in a design), the risk is accept-
able.

1.4.54 Instantiate the power pads for each power domain (r)

The power pads should be instantiated in the VHDL code for each power domain. Nevertheless,
don’t define ports in advance, because this causes problems in Apollo. In Aquarius there is a bug,
where no netlist can be written out without PG ports and so there is an inconsistency compared
to the synthesis results, when the PG ports are not defined in the VHDL. For this reason, there
exists a script provided by HW LG (Highway Layout Generation) to remove these additional ports.

1.4.55 Insert test-enable for scan-test (m)

The scan-test enable-pin needs to be defined as a port in advance at all units that will be simulated
separately as a gate-level-block. Usually the pin name is test_se . The same applies to each
scan-chain input and output, if these pins cannot be multiplexed to other pins.

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

49Application Notes

1.4.56 Refer to the rising edge of clock (r)

in order to avoid inverters in the clock line (Starlib contains positive edge triggered flip-flops only).
Falling-edge-triggered processes should be used as an exception and only if absolutely neces-
sary. An inverter is inferred in the clock line, which must be handled separately in the routing pro-
cess, which is error-prone.

1.4.57 Do not use combinational feedback loops (m)

Combinational feedback loops are often the reason of problems in tools relying on statical timing
informations. Especially designs which are part of an hierarchical design flow or macros should
avoid such timing arcs are not characterizable in a later abstraction step.

1.4.58 Spacer cells needed between pads (e)

In the padlib, there are different spacer cells available, which must be placed between pads. There
are analog spacer, digital spacer and spacer cells with diodes, which have to be placed between
an analog and a digital pad. The safest way to get these cells in the netlist is to instantiate them
in the VHDL code, but you have to clarify how much and which spacer cells you need. Neverthe-
less, it is also possible to add the spacer cells during layout.

1.4.59 Spend extensive efforts for documentation of interfaces (r)

Interface problems are the most frequent source of simulation and even chip failure. Comments
can be used for documentation of interfaces. Avoid duplication of comments, put them into the
entity, and do not repeat in the architecture. Duplication often leads to inconsistencies or
increased maintenance effort.

1.4.60 Build interface consistency checks into the model (a)

Asynchronous interfaces must be equipped with timing checks. Use passive processes for this
purpose. A passive process is a process statement where neither the process itself, nor any pro-
cedure of which the process is parent, contains a signal assignment statement. Passive pro-
cesses in the entity statement part can be used for timing or other checks:

 library ieee;Espe
 use ieee.std_logic_1164.all;

 entity checkit is
 port (
 clk : in std_ulogic;
 res : in std_ulogic;
 dat_i : in natural range 0 to 15;
 ctl_i : in std_ulogic;

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes50

t e c h n o l o g i e s
Infineon

 dat_o : out natural range 0 to 31
);
 begin
 check_tim: process (clk, dat_i)
 variable dat_last_value_v : integer := -1;
 variable dat_last_change_v : time := 0 ns;
 begin
 -- remember value and time, if change occured
 if dat_i /= dat_last_value_v then
 dat_last_value_v := dat_i;
 dat_last_change_v := now;
 end if;
 if clk'event and clk='1' then
 assert (now - dat_last_change_v) > 2 ns
 report "Error: Setup violation on dat_i"
 severity error;
 end if;
 end process check_tim;

 -- dynamic range constraint checked:
 -- (range narrowed when ctl_i='1')
 check_range:
 assert ctl_i='0' or dat_i<8
 report "Error: Range violation on dat_i while ctl_i='1'"
 severity error;

 end checkit;

This technique has the other big advantage that checks are carried out equally for all architectures
of this entity.

Note that the entity part is analyzed for synthesis by ssemake. Of course, passive processes can-
not be synthesized. Therefore, analyze issues the warning
 SPC_warning: Statements in an entity declaration
 are not supported for synthesis. They are ignored
 in entity checkit on line 4 (VHDL-2001)

that can be skipped safely. It is not necessary to mask passive processes via -- pragma
synthesis_off/on.

1.4.61 Balance clock to delta accuracy (m)

Gated clocks or clock assignments imply a delta-delay in the RTL model. This corrupts the mem-
ory function of serially connected register processes (shift-registers).

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

51Application Notes

(Note that the and-gate is used here for simplification. In your design, a different gating logic may
be appropriate for spike suppression etc.)

If the receiving process is clocked by a gated clock gclk, whereas the sending process runs with
the master clock mclk, then the clock-event is recognized before the corresponding data-event.
There exists a "hold time violation" at the scale of delta-delays:

 r1: process (mclk,
 ...
 elsif mclk'event and mclk='1' then
 dat <= d_i;
 end if;
 end process r1;

 gclk <= mclk and pdn; --<- this infers on delta!

 r2: process (gclk,
 ...
 elsif gclk'event and gclk='1' then
 d_o <= dat;
 end if;
 end process r2;

"Balancing the clock tree" at delta accuracy restores the desired functionality:

 mlck_bal <= mclk; --<- this infers one balancing delta!

 r1: process (mclk_bal,
 ...
 elsif mclk_bal'event and mclk_bal='1' then
 dat <= d_i;
 end if;
 end process r1;

 gclk <= mclk and pdn; --<- this infers one delta!

 r2: process (gclk,
 ...
 elsif gclk'event and gclk='1' then
 d_o <= dat;
 end if;

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes52

t e c h n o l o g i e s
Infineon

 end process r2;

The other alternative to cope with these delta races was delaying all registered signals by 1 ns.
This would correspond to the actual circuit behaviour. Only the delay value cannot be accurate at
all. Hold time violations would be removed that way. This strategy has not been chosen, since CVE
(formal verification) does not recognize the delay.

Related rule: "Avoid gated clocks".

1.4.62 Pull-ups and pull-downs have to be modeled on chip level (r)

Pull-behaviour is necessary for system-simulations, where multiple chips are instantiated on a
board. This rule is obsolete if correct IO-cells have been instantiated. Pull-behaviour is modeled in
the IO-cells.

1.4.63 Strength stripping should be performed on chip level (r)

The recommended logic type is std_ulogic (see "Data types at chip and macro ports:
std_(u)logic(_vector)"). This type is nine-valued, but inside chip- and unit-models only two or three
of them are used: '0', '1' and 'Z'.

A testbench or a system simulation model might use weak values as well, which then cause mal-
function of the models under development. Therefore these weak values should be translated to
'x', '0' and '1' at the chip level for all inputs. The translation should be performed directly behind the
pad. At this point bidirectionals are split to input, output and enable.

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

53Application Notes

1.4.64 Do not assign the value 'X' (r)

The unknown level 'X' is used in standard cell models to warn about
setup- and hold-violations. However, in RTL-models timing is not
analyzed at that fine scale. Timing-checks are only performed at
asynchronous interfaces. Exceptions at these interfaces and other
exceptions should be handled using assertions rather than 'X'-
assignments:

 if sla=3 then
 syna <= "001";
 else
 syna <= "XXX"; --<- don't use
 assert false --<- assertion preferred
 report "unexpected value on signal sla"
 severity warning;
 end if;

1.4.65 Use efficient description for the wrap around of counters (a)

1. Example: Full-coded counter
 inefficient1: process (clk)
 begin –- inefficient1
 if clk'event and clk = '1' then
 if count = 255 then
 count <= 0;
 else
 count <= count + 1;
 end if;
 end if;
 end process inefficient1;

Hardware will be synthesized to correspond to the if statement. This extra hardware is not neces-
sary because hardware naturally wraps around from 255 to 0. But for simulation purposes you
have to take the wrap around into consideration, else simulation will have a run-time error when
the incremented value reaches 256. So use the modulo operator:
 efficient1: process (clk)
 begin –- efficient1
 if clk'event and clk = '1' then
 count <= (count + 1) mod 256;
 end if;
 end process efficient1;

Extra mod related hardware will not be synthesized because the synthesis algorithms understand
the implied wrap around semantics of this model.

Another solution is the use of an array:
 library IEEE;
 use IEEE.std_logic_1164.all;
 use IEEE.std_logic_unsigned;
 entity counter is
 port (clk : in std_logic;
 data_o : out std_logic_vector(0 to 7)
);

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes54

t e c h n o l o g i e s
Infineon

 end counter;

 ...
 efficient2: process
 begin -– efficient2
 if clk'event and clk = '1' then
 count <= count + '1';
 end if;
 end process efficient2;
 data_o <= count;

The overloaded function for unsigned “+” and the synthesized hardware will both wrap around
from FF(hex) to 00(hex).

2. Example: Not full-coded counter
 inefficient2: process (clk)
 begin –- inefficient2
 if clk'event and clk = '1' then
 if count = 8 then
 count <= 0;
 else
 count <= count + 1;
 end if;
 end if;
 end process inefficient2;

The comparison of count with 8 for the wrap around causes too much hardware, because equality
is required. Also there are unused states (9 – 15), which cause uncertainties in the real hardware.
So the following description is safer and needs less gates:
 efficient3: process (clk)
 begin –- efficient3
 if clk'event and clk = '1' then
 if count >= 8 then
 count <= 0;
 else
 count <= count + 1;
 end if;
 end if;
 end process efficient3;

1.4.66 Use case-statements instead of if-statements when the conditions
are mutually exclusive (a)

Design Compiler will handle a case statement more efficiently in terms of CPU time than an if …
elsif statement because by definition the when conditions are always mutually exclusive.
 inefficient: process (sel, a, b, c, d)
 begin -- inefficient
 if sel = “00” then
 d_out <= a;
 elsif sel = “01” then
 d_out <= b;
 elsif sel = “10” then
 d_out <= c;
 else
 d_out <= d;
 end if;

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

55Application Notes

 end process inefficient;

Design Compiler is capable of deducing that the if ... elsif conditions are mutually exclusive but
precious CPU time is required for this analysis.
 efficient: process (sel, a, b, c, d)
 begin -- efficient
 case sel is
 when “00” => d_out <= a;
 when “01” => d_out <= b;
 when “10” => d_out <= c;
 when “11” => d_out <= d;
 end case; -- sel
 end process efficient;

1.4.67 Use vector operations instead of loops (a)

Design Compiler has to unroll the following loop:
 inefficient: process (scalar_a, vector_b)
 begin -- inefficient
 vec_loop: for k in vector_b’range loop
 vector_c(k) <= vector_b(k) and scalar_a;
 end loop vec_loop;
 end process inefficient;

Instead of such a loop, use vector operations, so Design Compiler works more efficiently:
 efficient: process (scalar_a, vector_b)
 variable temp_v: std_logic_vector(vector_b’range);
 begin –- efficient
 temp_v := (others => scalar_a);
 vector_c <= vector_b and temp_v;
 end process efficient;

1.4.68 Use boolean expressions instead of simple if-statements (a)

 if_proc: process (enable, data_i)
 begin –- if_proc
 if enable = '1' then
 data_o <= data_i;
 else
 data_o <= '0';
 end if;
 end process if_proc;

Design Compiler has to explore how to handle the if statement, so use a boolean expression
instead of the if-statement:
 bool_proc: process (enable, data_i)
 begin –- bool_proc
 data_o <= enable and data_i;
 end process bool_proc;

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes56

t e c h n o l o g i e s
Infineon

1.4.69 Avoid unnecessary repetition of function calls (a)

 a <= function1(input1, input2)(31)
 b <= function1(input1, input2)(3 downto 0)

function1 is called twice with the same inputs. This is inefficient in the simulation domain because
the repeated invocations of the function are redundant and waste CPU time; also during synthesis.
In other aspect is that resource sharing isn’t possible, because each function call is viewed as
being independent. So, use a temporary variable:
 temp_v := function1(input1, input2);
 a <= temp_v(31);
 b <= temp_v(3 downto 0);

1.4.70 Avoid unnecessary computations within loops (a)

 loop_bad: for k in 1 to 7 loop
 if k > (a - 1) then
 s(k) <= '1';
 else
 s(k) <= '0';
 end if;
 end loop_bad;

The computation of (a – 1) is constant for all iterations of the loop. Design Compiler will unroll the
for loop and deduce that the computation may be relocated outside of the for loop. So one sub-
tractor and seven comparators will be used by Design Compiler. However, the analysis for this
deduction is time consuming, which can be avoided by using a temporary variable:
 temp_v := a - 1
 loop_better: for k in 1 to 7 loop
 if k > temp_v then
 s(k) <= '1';
 else
 s(k) <= '0';
 end if;
 end loop_better;

However, the best solution is to avoid also the subtractor:
 loop_best: for k in 1 to 7 loop
 if k + 1 > a then
 s(k) <= '1';
 else
 s(k) <= '0';
 end if;
 end loop_best;

Remember that when this for loop is unrolled, k is a fixed value on each iteration of the loop. Con-
sequently, k + 1 can be synthesized as the fixed values 2, 3, 4, 5, 6, 7, 8.

1.4.71 Avoid declaring constants within subprograms (a)

For local constants within subprograms memory must be allocated at invocation and must be deal-
located when control returns from the subprogram which can be very expensive in terms of sim-
ulation performance, in particular if the constant happens to be a table.

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

57Application Notes

1.4.72 Be aware of the use of the attributes DELAYED, STABLE, QUIET, and
TRANSACTION (a)

Expressions using these attributes will create additional signals and will degrade performance.

1.4.73 Minimize the number of signals of your sensitivity list (a)

Minimize the number of signals of your sensitivity list so that models are only called when a reeval-
uation of the outputs is required. But consider that processes which desribe combinational logic
will require all inputs in the sensitivity list (The sensitivity list for combinational processes must be
complete). On the other hand, synchronous logic requires the clock signal only (Use standard
templates for clocked processes.

1.4.74 Always use deallocate(access_obj) to dereference allocated
memory (r)

This is especially necessary for pointers declared in subprograms. So, functions must not return
the contents of dynamically allocated memory, because this prevents the deallocation of that
memory within the function body and thus leads to memory leaks. The following function gives an
example for memory leak. If such a function is frequently invoked, this may eventually lead to a
simulation failure due to lack of virtual memory.
function mem_leak (xyz: integer) return string is
variable buffer_v: line;
begin
 write(buffer_v, xyz);
 return(buffer_v.all);
end mem_leak;

1.4.75 Do not use FSM attributes within the VHDL code (m)

By using the in built Synopsys FSM optimization routines, you can optimize FSMs in a design to
achieve maximum performance. The optimization commands for a state machine should be
placed in the <unit>.rscr file for that design. This is because there is a problem with the Synopsys
VHDL analysis when the FSM attributes (like attribute fsm_state_vector etc.) are in the VHDL
code. This causes the make mechanism to start again, every time, although there were no
changes to the VHDL source code.

1.4.76 A testbench has neither ports nor generics (e)

Otherwise simulator complains about missing initial values. Another disadvantage of ports and
generics is the fact that such testbench is not self-contained. I.e. it would produce different behav-
iour depending on the applied signals and values.

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes58

t e c h n o l o g i e s
Infineon

If a testbench builds on generics, a hyper-testbench is needed to configure the generics. A hyper-
testbench is a shell around the main testbench. It consists of an entity without ports, an architec-
ture instantiating the main testbench and the corresponding configuration.

The generic map may be placed in the configuration. Thus multiple configurations with different
generic settings can be prepared and precompiled for separate simulations with the same test-
bench.

1.4.77 Format for pattern text-IO is LSIM-TV (a)

Note that this rule relates to pattern stimuli and responses only. A custom format needs to be
defined where abstract data is accessed from VHDL models, e.g. assembler commands. A major
disadvantage of using LSIM-TV-pattern is non-reactive stimulus; i.e. stimulus does not depend on
the actual output values of the device under test.

LSIM-TV is a tester-oriented format. Input and output values are combined into one line where the
@<timeval> prefix indicates the strobe time in multiples of the base unit. Time values must be in
ascending order.
 CODEFILE
 UNITS ns
 INPUTS a[3], a[2], a[1], a[0], b[3], b[2], b[1], b[0];

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

59Application Notes

 OUTPUTS sum[3], sum[2], sum[1], sum[0];
 CODING(ROM)
 @0 <00000000>xxxx;
 @9 <00000000>xxxx;
 @10 <10000000>0000;
 @15 <10000000>0000;
 @20 <10000000>1000;
 @30 <10000000>1000;
 @40 <10000000>1000;
 @50 <00000001>1000;
 @60 <00000010>0001;
 @70 <00000000>0010;
 @80 <11111110>0000;
 END

All time units refer to the unit defined in the file header. Possible units are: ps, ns, us, ms.

The values of the inputs are enclosed in sharp brackets <...>; the expected output values at that
strobe time are appended. The values are ordered according to the INPUTS and OUTPUTS-
statements in the file header.

Utility functions for reading and writing LSIM-TV format files are available through the precompiled
resource library lsim_interface. However, do not use them directly. Rather utilize tbgen-hw and
wig. tbgen-hw creates a testbench for a unit. This testbench reads LSIM-TV files for stimulus and
expected responses. wig instantiates a LSIM-TV writer into an existing testbench. This writer
strobes all DUT-interface signals.

Using tbgen-hw and wig guarantees standard-compliant LSIM-TV files (especially wrt. bidir-han-
dling).

1.4.78 Use abstract, compact coding style in testbench and simulation
models (a)

Abstract coding styles should be used in testbenches whenever possible, because of flexibility,
readability and performance advantages. In testbenches, synthesizability restrictions do not apply,
unless the test is carried out on the cycle-based simulator or the hardware emulator.

Note that nowadays the amount of testbench code may even exceed the amount of DUT code.

For abstract coding the following may be used: record types, access types (for pointers), real val-
ues, etc.

1.4.79 Stop the simulation from within the testbench (a)

The testbench should stop the simulation by itself, either by ceasing generation of events, or by
using an assertion:
 variable k_v : integer := 0;
 ...
 k_v := k_v + 1;
 assert k_v < 86400 --<- activated if expression
 -- evaluates to false
 report "stopping simulation ..."
 severity failure;

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes60

t e c h n o l o g i e s
Infineon

These techniques are advantageous, because the simulation duration is "calculated" from within
the testbench, and needs not be adjusted in a separate simulator script. For some simulations, the
end of the stimulus file is a stopping criterion. Modification of the stimulus file automatically adjusts
the simulation duration.

Templates for stopping of simulation are prepared in emacshw.

Note that restoring a simulation in Leapfrog is possible even with this technique, if the simulation
has been run up to the end. Therefore, short simulation duration should be used during the debug-
ging phase.

1.4.80 Use assertion messages extensively (a)

Use assertions extensively, to monitor significant events. Make sure, that a useful severity level is
assigned to the message.

Alternatively use std.textio.output for more compact messages, but only for simulation models
(CVE cannot handle text-IO properly up to now). Limit each assertion line to 80 characters:
 write(textline, msg); -- <- writes the message
 writeline(output, textline); -- <- to stdout

Use string concatenation and formatting characters for long messages.
 assert error_flag='0'
 report "*** error in function read_byte:" & LF &
 " undefined symbol in stimulus file"
 severity error;

Assertions should be used to

Check parameter and array size consistency unless these are not checked by type definition.

Check whether input values to subprograms or entities are legal.

Give notification of any error condition.

1.4.81 Global signals may be used for testing purposes only (m)

Global signals are declared in a package. They allow for communication between architectures
without requiring port connections.

Global signals may be used for testing purposes only, e.g., stimulus injection, and internal probes:

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

61Application Notes

Function of models may not rely on any global signal. Declarations and references of global sig-
nals have to be hidden from synthesis via meta comments:
 package glob_pack is
 signal probe_global : boolean := FALSE;
 signal errorinject_global : boolean := FALSE;
 end glob_pack;
 ...

 architecture ...
 ...

 probe_global <= internal_sig;
 ...

 p1: process (a, b)
 begin -- p1
 z <= (a or b) xor b;
 -- pragma synthesis_off
 if errorinject_global then
 z <= '0';
 end if;
 -- pragma synthesis_on
 end process p1;
 ...

Note that no meta-comments -- pragma synthesis_off/on are required for
probing via global signals.

1.4.82 Use std.textio only, where really necessary (a)

Details of text-IO are simulator dependent. Especially avoid std.textio.input. std.textio.endline is
excluded from VHDL-87, use l'length=0 instead.

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes62

t e c h n o l o g i e s
Infineon

1.4.83 Communication between modules using text-IO is forbidden (m)

Such techniques may cause non-deterministic behaviour of the model.

1.4.84 No characters with a lower rank than space may occur in text-IO (m)

This would degrade portability over different platforms and over different simulators.

1.4.85 Binary file-IO may not be used (a)

Binary file-IO formats are simulator- and platform-specific and therefore not portable. However,
binary file-IO has some performance-advantage. Therefore binary file-IO is not forbidden, but it

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

63Application Notes

A converter consists of a simulation model, which runs the same text-IO and file-IO routines as the
testbench.

1.4.86 Use relative pathnames for files accessed through text-IO (m)

Otherwise models are not portable at all. Note that absolute pathnames are used in the models of
memlib at the moment, such that the memlib needs to be generated on a project-by-project basis.
This will be changed in the future.

1.4.87 Check the success of every file operation (r)

A readline/writeline operation may crash if the file was not opened successfully. Similarly, a read/
write operation after a failed readline/writeline may cause a failure.

1.4.88 Store file data to a VHDL variable, if read multiple times (e)

In VHDL-87 a file cannot be re-read. There is neither a file-close nor a file-open command. There-
fore a file can be read only once. To access the read data multiple times, the data must be stored
to a VHDL variable. If the lines contain only one piece of data, an array is appropriate, else you
may use an array of records.

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes64

t e c h n o l o g i e s
Infineon

1.4.89 Use a separate library clause for each declared resource library (a)

Do not make more than one package visible with a use statement, i.e., avoid the following:
 use ieee, std_developerskit;

Instead write:
 use ieee;
 use std_developerskit;

In addition it is more readable and partial deactivating is easier using comments.

1.4.90 Use a separate use clause for each declared package (a)

Do not make more than one package visible with a use statement, i.e., avoid the following:
 use ieee.std_logic_1164, std_developerskit.std_iopak;

Instead write:
 use ieee.std_logic_1164;
 use std_developerskit.std_iopak;

In addition it is more readable and partial deactivating is easier using comments.

1.4.91 Indentation should be consistent in all VHDL code (r)

Use 2 spaces instead of TAB, being environment dependent. In emacshw automatic TAB-to-
spaces conversion is the default. If you use vi, TAB must be used for auto-indentation. In this case
all indentation must be done using TAB's. I.e. don't mix TAB's and spaces. The UNIX tool expand
can be used to convert TAB's to spaces.

Consistent indentation is important for easy recognition of the code structure. Mixed use of TAB's
and spaces may lead to scrambled indentation on printer or other terminals.

1.4.92 Align comments vertically (a)

if tst_mode = 0 then
 wait for 10*period_c;
 -- sets time to 08:15 and toggles toggle
 -- for activating alarm
 set_time <= active_set_time;
 wait for period_c;
 ...

Aligning comments this way allows for clear recognition of the code structure.

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

65Application Notes

1.4.93 Align declaration lists vertically (a)

Column-wise alignment is recommended. I.e. align not only port or signal names vertically, but
also port mode, type and trailing comment. Trailing comments are allowed for declarative state-
ments.
 port(
 clk : in std_ulogic;
 reset : in std_ulogic;
 test_se_i : in std_ulogic; --<- scan test enable,
 -- active high
 toggle_i : in std_ulogic; --<- toggle enable,
 -- active high
 st_o : out std_ulogic --<- status bit
);

Declare one port per line only. This improves readability and enables straightforward component
instantiation. Component instantiation can be done by hand using cut and paste to generate the
component declaration from the entity declaration. Alternatively, this can be achieved semi-auto-
matically using emacshw's feature "component instantiation". It relies
on a port list with one port per line.

1.4.94 Align association lists vertically (a)

check_timing_p(
 clk => clk,
 res => rst,
 dat => data_i);

This rule applies not only to association lists of procedures, but also to those of functions, port
maps, generic maps and array initializations.

1.4.95 Processes should be labeled (r)

Synopsys VHDL Compiler uses process labels to name registers. Therefore, it is easier to identify
structures in the netlist, if labels had been used.

1.4.96 Use closing labels for entity, architecture, process, loop, generate,
etc. (a)

Use meaningful labels, i.e. not u1 .
 protocol_checker: process(pass) -- <---
 begin
 ...
 end process protocol_checker; -- <---

1.4.97 Indicate condition at remote ends of control structures (if ... then,

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes66

t e c h n o l o g i e s
Infineon

case) (a)

This rule applies to constructs that spread over more than 10 lines.
 if pass then
 ...
 ...
 else -- not pass -- <---
 ...
 ...
 end if; -- pass -- <---

1.4.98 Language for comments and code documentation is English (m)

Many design teams at Infineon Technologies are already international. English is quite natural for
them. But this rule also applies to national teams. Their design or parts thereof might get re-used
in another country.

1.4.99 Comments should be related to the lines of code below (a)

Example:

 -- output

 -- address_decoder is an one-from-n decoder.
 -- it is necessary to select the correct register,
 -- corresponding to the address.

 address_decoder: process (address)
 constant max_regsel : integer :=
 (2 ** addressbus_width) - 1;
 subtype rsrange_t is integer range max_regsel downto 0;
 variable regsel_v : std_ulogic_vector(rsrange_t);
 begin
 ...

1.4.100 Comment each process, each subprogram and global aspects (r)

Global aspects are not only global signals, but as well

❏ Variables, signals or subprograms used in many wide-spread places

❏ Types and constants relevant for all of the project

❏ File formats used in testbenches

The comments should be placed at the declaration or where the file is written.

Comments should describe what the code does, not how this is achieved.

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

67Application Notes

1.4.101 Trailing comments are allowed for declarative lists (a)

Example:
 signal idle_mode : std_ulogic; -- deactivates accumulator

1.4.102 Maximum line-length is 80 characters (a)

The origin of this recommendation lies in the history of terminals. Still many engineers are used to
that width of texts. They have adjusted their editors accordingly. The same applies to printouts.
Editors and pretty-printers are capable of handling wider code. However, exchangeability and
acceptance of your code at the re-user is increased, if 80 columns are used.

Sometimes it is the trailing comments in declarative lists that let the code grow wide. Try to shorten
the trailing comments, wrap it to the next line or move them on top of the described declaration:
 signal snd_ctl_inv : std_ulogic_vector(snd_range_t); -- sound
 -- control

Distribute strings that exceed 80 columns to multiple lines with string concatenation:
 library std_developerskit;
 use std_developerskit.std_iopak.all;

 assert mode/=1 or snd_ctl_inv="001"
 report "Error: wrong value of snd_ctl_inv in mode 1" & LF &
 " snd_ctl_inv=" & to_string(snd_ctl_inv)
 severity error;

1.4.103 Use one statement per line (a)

Multiple statements per line may be considered, only, if they are of repetitive type, e.g.:
 D0 <= D(0); D1 <= D(1); D2 <= D(2);

1.4.104 Group related constructs (a)

Keep this rule in mind while coding concurrent statements. Their order is not crucial for correct
functionality. However, concurrent statements and processes with strong interaction should be
placed next to each other. With such arrangement, the reader can understand the code more rap-
idly.

1.4.105 Group related port or signal declarations (a)

Use one declaration per line plus an optional trailing comment. For ordering of ports one of the fol-
lowing methods may be used:

Order according to mode: clock, reset, inputs, bidirectionals, outputs.

Or order ports according to functionality groups, within groups order according to mode, e.g.:

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes68

t e c h n o l o g i e s
Infineon

 port (
 clk : in std_ulogic; -- system clock
 res : in std_ulogic; -- async. reset

 test_mode_ni : in std_ulogic;
 stop_mode_no : out std_ulogic;
 idle_mode_no : out std_ulogic;

 sfr_data_i : in std_ulogic_vector (7 downto 0);
 sfr_data_o : out std_ulogic_vector (7 downto 0);
 sfr_wr_o : out std_ulogic;
 sfr_rd_o : out std_ulogic;

 mem_data_i : in std_ulogic_vector (7 downto 0);
 mem_addr_o : out std_ulogic_vector (9 downto 0);
 mem_data_o : out std_ulogic_vector (7 downto 0);
 mem_wr_no : out std_ulogic;
 mem_rd_no : out std_ulogic;
 );

1.4.106 Switch constructs should not be nested to more than 4 levels (a)

Code exceeding this limit tends to be very difficult to understand. This is especially the case if the
switch construct is very long. In such cases it may take a while to find and correlate corresponding
if, elsif and else statements.

To come around this problem, use subprograms, which package parts of the functionality. Such
subprograms may be local to the process or subprogram. This is the only case, where side effects
are acceptable, i.e., manipulation of variable values without passing the variable into and out of the
subprogram. The subprograms have to be local to the calling process or subprogram:

 out_proc: process(clk, rst)
 variable start_v : integer := 12;
 function gen_cnt_f() return integer is --<- local
 begin --<- function
 <LOTS_OF_CODE> --<-
 return (start_v + 2); --<-
 end gen_cnt_f; --<-
 begin
 if rst=rstactive then --<-
 cnt <= 0; --<- process
 elsif clk'event and clk='1' then --<- structure
 if mode0='1' then --<- easily
 cnt <= start_v - 15; --<- recognized
 else --<-
 start_v := start_v + 1; --<-
 cnt <= gen_cnt_f(); --<-
 end if; --<-
 end if; --<-
 end process out_proc;

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

69Application Notes

1.4.107 Remove unnecessary code fragments (a)

For detection use the coverage analysis facility coversim. This tool provides you with a listing of
your source code with annotated activity numbers. Of course, it may turn out at this point, that the
pieces of code may not be removed, and that the tests need to be enhanced.

Once you have identified code fragments, that are no longer needed, really delete them. Rely on
source code versioning, which allows for arbitrary retrieval of previous versions of the code. Using
comment signs for deactivating is not appropriate. This may be used for ad-hoc testing only, but
may not occur in delivered code.

This rule does not apply to VHDL code referenced from general-purpose resource libraries. These
libraries typically contain code, which is not activated in the current application. This code cannot
and must not be remove.

In a similar way, softmacros may contain code, which is not relevant in the current application. For
security reasons, do not remove the respective code fragments. There might be side effects,
which are not obvious.

1.4.108 Use named association in association lists (r)

This rule makes sure that misconnections do not happen. Even if the order of formal parameters
is changed in the declaration, the association list is still valid. The rule applies to

Port and generic maps

Function and procedure calls

First exception to this rule: Frequently and locally used, short subprograms with few parameters:
 execute: process
 file log_file : text is out log_name;
 variable textline : line;
 procedure print_p(msg : string) is --<- subprog. local
 begin --<- to this proc.
 write(textline, msg);
 writeline(log_file, textline);
 end print_p;
 begin
 ...
 if pline(1 to 4) = ":eot" then
 print_p(">> Test complete <<"); --<- *)
 elsif (pline(1 to 7) = ":pct_on") then
 print_p(">> PC trace on <<"); --<- *)
 ...

 -- *) positional association is easier in this case

Such use of subprograms is very similar to replacement macros. They increase readability and
modularity; i.e. changes to the functionality are performed rapidly at one place.

Second exception to this rule: Use positional association for initialization of constant arrays.
Named association causes the Leapfrog simulator to crash at this instance.

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes70

t e c h n o l o g i e s
Infineon

1.4.109 Order of items should be the same in package header and body (r)

This enhances greatly orientation within the package. Type declarations and constant definitions
in the header should precede to the subprograms that are common to header and body. In the
same way, package-local subprograms should be placed at the very beginning of the package
body:

 package ordered_pack is
 -- type declarations
 -- constant definitions
 -- subprogram 1 declaration --<- common
 -- subprogram 2 declaration --<- part,
 -- ... --<- same order
 end ordered_pack;

 package body ordered_pack is
 -- type declarations, local to the package
 -- constant definitions, local to the package
 -- subprogram definitions, local to the package
 -- subprogram 1 definition --<-
 -- subprogram 2 definition --<- common part,
 -- ... --<- same order
 end ordered_pack;

1.4.110 Use predefined attributes to make code generic and more re-usable
(a)

Use predefined attributes in order to write generic and re-usable code, especially for array type
objects:
 for k in 1 to rd_line'length loop --<- independent of
 -- actual length
 pure_line(k) := rd_line(k);
 ...

Make your VHDL code independent of the direction of vectors by using predefined attributes:
 function "abs" (arg: signed) return signed is
 constant arg_left : integer := arg'length-1; --<- *)
 constant xarg : signed(arg_left downto 0) := arg;
 variable result : signed(arg_left downto 0);
 begin
 result := to_01(xarg, 'x');
 ...
 return result;
 end "abs";

 -- *) predefined attribute 'length

Defining xarg makes sure, that in the algorithm the input vector is 'normalized' to the downto-direc-
tion.

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

71Application Notes

1.4.111 Language for modeling is VHDL-87 (m)

In no parts may VHDL code rely on VHDL-93 features. The reason for this policy is laid by the fact
that most CAE tools do not support VHDL-93. Remember that we want to use the same VHDL
code in various tools:

❏ Simulator

❏ Synthesis tool

❏ Formal Verification tool

❏ RTL Floorplaning tool (in the future)

Furthermore, we want to be prepared for eventual tool exchanges by relying on the most common
standard. This implies that we find a good balance between using only basic functionality of the
language and exploring every niche.

See section Literature for information on how to obtain the correct version of the LRM (Language
Reference Manual).

1.4.112 Check for LRM-compatibility using cv w/o -compat switch (r)

Unfortunately VHDL compilers adhere to the VHDL standard to different levels. Synopsys' VHDL
Compiler is the tool, which is least strict regarding VHDL rules. In some cases, compilers accept
expressions that are not backed by the standard. Other tools then fail on exactly these parts of the
code.

Special care is needed while working with the Leapfrog compiler cv and the elaborator ev. It may
be operated with the switch -compat, which makes it behave as Synopsys' VHDL Compiler. We
urge you not to use this switch, as it only guarantees that these two tools can process the code
equally. However, the code is also intended for formal verification with CVE and for the RTL floor-
planner (in the future).

Note that the compilation step is not only a preparation of the tool run, but also a check for porta-
bility. It seems that the strictest test for portability is performed by smake -cve. Use this compiler
extensively. In emacshw, you may consult all available compilers through the Compile menu.

There is one exception, where the use of cv/ev -compat is acceptable:
"Old" VHDL code, where non-standard styles are used. Usually such code is not acceptable.
Cleaning the code, or a re-write are recommended. However, all functionality must be verified
intensively then. For the intermediate time, the "old" code can be used with -compat.

Note, that -compat is not needed for instantiation of library cells, such as pads!!! If you get the fol-
lowing error-message from ev:

 ev:*W,1101:component instance is not fully bound ...

add a use clause to the configuration:
 library padlib; --<- make pad component
 use padlib.components.all; --<- decls. available

 entity cli_chip is
 ...
 end cli_chip;

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes72

t e c h n o l o g i e s
Infineon

 architecture struc of cli_chip is
 ...
 begin
 p1 : PGI_ECB1xxEx -- same casing as in padlib!
 port map (
 ...
 end struc;

 library padlib; --<- make all pad entities and
 use padlib.all; --<- architectures available for
 -- default binding

 configuration cli_chip_struc_c0 of cli_chip is
 for struc

 for core : cli_core
 use configuration work.cli_core_struc_c0

 end for;
 -- no component-configuration for the pads here!!!
 -- default binding allowed, because only one
 -- architecture exists for every pad entity

 end for;
 end cli_chip_struc_c0;

For formal verification with CVE it is necessary that the component declaration is provided through
the components-package, which resides in the resource-library.

1.4.113 VHDL-93 keywords should not be used (r)

In order to allow the reuse of modules coded according to the VHDL-87 standard in future InWay
releases, which will support the IEEE VHDL-93 standard also, the following 93-keywords should
be avoided:

group impure inertial literal postponed
pure reject rol ror shared
sla sll sra srl unaffected
xnor

In additon it should be kept in mind when writing upwards compatible code, that the behaviour of
the concatenation operator and the access of discrete slices of arrays have been modified slightly.

So the resulting left bound and the direction of a concatenated arrays are defined differently for
VHDL 87 and VHDL 93 under certain cirumstances.

While VHDL 93 requires, that array slices must show the same direction as the original array, the
VHDL 87 evaluates opposite directions of slices and arrays to a null slice.

1.4.114 Verilog keywords should not be used (r)

always and assign attribute
begin buf bufif0 bufif1

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

73Application Notes

case casex casez cmos
const deassign default defparam
disable edge else end
endattribute endcase endfunction endmodule
endpackage endprimitive endspecify endtable
endtask event for force
forever fork function highz0
highz1 if initial inout
input integer join large
macromodule medium module nand
negedge nmos nor not
notif0 notif1 or output
package parameter pmos posedge
primitive pull0 pull1 pullup
pulldown reg rcmos real
realtime reg release repeat
rnmos rpmos rtran rtranif0
rtranif1 scalared signed small
specify specparam strength strong0
strong1 supply0 supply1 table
task time tran tranif0
tranif1 tri tri0 tri1
triand trior trireg use
vectored wait wand weak0
weak1 when while wire
wor xor xnor

The given list of keywords is merged from all relevant lists. The list varies from tool to tool.

1.4.115 SDF keywords should not be used (r)

SETUPHOLD RECOVERY SKEW WIDTH
SETUP PERIOD NOCHANGE PATHCONSTRAINT
NETDELAY HOLD SUM DIFF
SKEWCONSTRAINT DEVICE DESIGN PORT
INTERCONNECT COND IOPATH DATE
PROGRAM VERSION DIVIDER VOLTAGE
VENDOR PROCESS TEMPERATURE TIMESCALE
CELL CELLTYPE CORRELATION INSTANCE
DELAY TIMINGCHECK ABSOLUTE INCREMENT
PATHPULSE GLOBALPATHPULSE DELAYFILE SDFVERSION

1.4.116 Carefully use real values with PN-generators (a)

The behaviour of pseudo-random number generators based on real type is potentially not repro-
ducible on a different platform.

1.4.117 Allowable replacement characters are forbidden. (m)

Allowable replacement characters are defined in LRM 13.10. It is a rarely used feature. We sus-
pect that different simulators handle these characters differently.

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes74

t e c h n o l o g i e s
Infineon

1.4.118 Tool specific types may not be used (m)

Use standard types like boolean, integer, etc. or the ieee standard logic types
std_(u)logic(_vector). All VHDL '87 compliant tools support these types.

1.4.119 Operating system specific features may not be used (r)

At the moment, SC-Highway runs under Solaris. However, for the future it cannot be guaranteed
that this will always be the (only) operating system. A trend of CAE-tools towards Microsoft Win-
dows is obvious. Therefore make sure that your VHDL model does not rely on operating system
specific features like e.g. /dev/null. Furthermore, model exchange with sub-contractors and cus-
tomers is more seamless if those features are omitted.

1.4.120 Never redefine standard operators, subprograms, attributes, and
packages (r)

There is the possibility of overloading in VHDL. An operator or subprogram may be named the
same as one that is already existing. The parameter profile must be different. This is a very useful
feature because the code reads the same independent from the types being used. Make sure that
subprograms of one name implement the same functionality in order to avoid confusion.

If the parameter profile is equal to one of an existing version of the subprogram, a rule of VHDL
says that both subprograms get invisible. Thus, an error is issued to give awareness of the dan-
gerous situation. Unfortunately the switch -compat of the Leapfrog simulator enables a search
mechanism instead; i.e. the first subprogram encountered will be elaborated. This is a dangerous
policy, because it is not clear which subprogram takes effect. We recommend not to use -compat
(see the related rule "Check for LRM-compatibility using cv w/o -compat switch"), however there
are situations where it cannot be avoided. In such case, make sure that no subprogram gets over-
ridden in the above-described way.

Redefining standard packages or commonly available utility packages is dangerous to the same
degree. Re-users of your model might not be aware of this construction and fail while referring to
the standard version of the package.

1.4.121 Bussed ports of width one are forbidden (r)

In the past there have been problems in the Cadence tools with such busses. The respective tools
are not used in SC-Highway at the moment. Nevertheless avoid this construct for the sake of port-
ability.

1.4.122 Configuration declarations must have the configuration name and
the entity name in one line for vimport (a)

A configuration declaration has to look like this:

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

75Application Notes

 configuration <conf-name> of <ent-name> is --<- must be one line
 for <arch-name>
 [

 for <inst-name> | all : <comp-name>
 use configuration

 work.<name-of-config-to-be-referenced>
 end for;
 ...

]
 end for;

 end <conf-name>;

If there is a line break in the first line,vimport isn't able to recognize the entity-
name.

1.4.123 Bussed arithmetic objects use "downto" as their index orientation
(r)

It is common policy to use downto index orientation for vectors that denote arithmetic numbers.
Thus the MSB can always be retrieved using the attribute 'high. Furthermore the packages
std_logic_arith and synth_regpak rely on this rule.

Use downto-direction for slices as well.

1.4.124 Request external VHDL code suppliers to deliver used arithmetic
packages (r)

If the delivered code uses one of the packages std_logic_arith, std_logic_signed or
std_logic_unsigned, these must accompany the delivered code. (We must check, whether their
contents match their counterparts in SC-Highway, unfortunately some CAE-vendors brought mod-
ified versions to their customers). These packages must be referenced out of the library ieee. Pro-
prietary arithmetic packages must not be used prior to confirmation of the project leader at HL.

1.4.125 Where to use ieee.std_logic_arith and
std_developerskit.synth_regpak (e)

If bit-wise manipulations are predominant (e.g. rounding bits, quantization, etc.), use
ieee.std_logic_arith.signed or unsigned and the operators defined in this package.
std_developerskit.synth_regpak should be used only, where std_logic_arith doesn't offer the
needed functionality. Make only those objects visible using selective use clauses, e.g.:
 use std_developerskit.synth_regpak.regadd;
 use std_developerskit.synth_regpak.regsub;

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes76

t e c h n o l o g i e s
Infineon

1.4.126 Where to use std_logic_signed and std_logic_unsigned (e)

The arithmetic package being used most is std_logic_arith. This should be reflected in our models
as well. However, if one entity uses either signed or unsigned arithmetic only and not a mix of both,
then it makes sense to use the package std_logic_signed or std_logic_unsigned respectively.
Thus arithmetic signals and variables need not be converted to signed or unsigned. The operators
out of these packages work on std_logic_vector's directly. Type marking is still necessary to main-
tain unresolved vector data types (see the related rule: "Unresolved data types std_ulogic(_vector)
are recommended"):

 variable datin_v : std_logic_vector(dat_i'range);
 variable datout_v : std_logic_vector(dat_o'range);
 ...
 datin_v := std_logic_vector(dat_i);
 ...
 dat_o <= std_ulogic_vector(datout_v);

If an entity uses std_logic_(un)signed then a use clause for std_logic_arith is not needed.

Related rule: "Type mark comparison operands".

1.4.127 Take care of array widths for std_logic_arith operators (e)

+/- : both operands must have the same width as the result.
* : width of result = width of operand 1 + width of operand 2.

This holds for std_logic_arith/signed/unsigned regardless of the possible value ranges. The oper-
ands can be extended using the following functions:
 conv_unsigned(arg: unsigned; size: integer)
 return unsigned;
 conv_signed (arg: signed; size: integer)
 return signed;

To extend the vector arg, the new size must be larger than its actual width.

1.4.128 Use conversion functions around arithmetic operators (e)

Conversion functions are needed, unless all operands and the target are available as integers.
The following three-part structure is proposed:

 library ieee;
 use ieee.std_logic_arith.all;
 ...
 signal op1, op2, res : std_ulogic_vector(wi_c-1 downto 0);
 ...
 arith : process (clk, rst_n)
 variable op1_v, op2_v, res_v :
 integer range 0 to (2**wi_c)-1;
 ...
 elsif clk'event and clk='1' then
 op1_v := conv_integer(unsigned(op1)); --<- 1)

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

77Application Notes

 op2_v := conv_integer(unsigned(op2)); --<- 1)
 res_v := op1 - op2; --<- 2)
 res <= std_ulogic_vector(
 conv_unsigned(res_v, wi_c)); --<- 3)
 ...

1.4.129 Comparison of arithmetic arrays should be based on same type and
width (r)

For comparison use the operators from ieee.std_logic_arith/signed/unsigned. Using same type
and width guarantees, that the result is as expected. Comparison operators from
ieee.std_logic_1164 are not recommended, as their comparison is based on the lexical value.

Do not rely on VHDL built-in comparison operators. These operators are based on lexical order as
well. Such built-in comparison operators get implicitly created for each new type.

Related rule: "Type mark comparison operands".

1.4.130 Type mark comparison operands (r)

This rule must be followed if std_logic_(un)signed is visible. For each declared vector type there
is a comparison operator implicitly created. Its declaration is not given. Still the operator is avail-
able. For std_logic_vector there is another comparison operator available, which stems from
std_logic_(un)signed, e.g.:
 use ieee.std_logic_1164.all;
 use ieee.std_logic_signed.all;
 ...
 signal a1 : std_logic_vector(4 downto 0);
 ...
 x <= '1' when a1 = "00000" else '0'; --<-

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes78

t e c h n o l o g i e s
Infineon

In this situation VHDL states that both operators shall be hidden. The compiler issues an error
message to warn about the ambiguity. Unfortunately not all compilers available in the SC-Highway
detect this situation correctly. Use the compiler vhdl of CVE to check for this problem (smake -cve).

The solution for the problem is to explicitly state in the code which comparison operator shall be
used:
 use ieee.std_logic_1164.all;
 use ieee.std_logic_signed.all;
 ...
 signal a1 : std_logic_vector(4 downto 0);
 ...
 x <= '1' when ieee.std_logic_signed."="(a1, "00000") --<-
 else '0';

Another solution is the using an unresolved vector (std_ulogic_vector). For this type no additional
comparison has been defined:

 use ieee.std_logic_1164.all;

 use ieee.std_logic_signed.all;

 ...

 signal a1 : std_ulogic_vector(4 downto 0); --<-

 ...

 x <= '1' when (a1 = "00000") else '0'; --<-

Alternatively, type marking to force the use of the same comparison operator:
 x <= '1' when (std_ulogic_vector(a1) = "00000") else '0';

1.4.131 Run synthesis early in the design process (r)

Early synthesis is recommended as a means to analyze the performance achievable with the cho-
sen RTL-implementation. Only slight performance improvements can be achieved through con-
straint refinement or modification of the compile strategy. Major performance lacks can only be
removed by RTL-code re-arrangements. Such fundamental code-changes should be done as
early as possible, in order to come to a stable base for further fine-tuning and chip-/macro-inte-
gration.

1.4.132 Code for synthesis must match the synthesis subset (m)

The most important prerequisite for writing synthesizable VHDL code is knowledge of the Synop-
sys VHDL Compiler. The synthesis subset of VHDL is described in this document: Check out the
VHDL Compiler Reference from the Synopsys online-documentation: tooldoc synopsys. A brief
overview of the supported VHDL subset is given in appendix C: "VHDL Constructs".

The other source of information is the Synopsys Release Notes. You can access them through
Solv-It at www.synopsys.com . For subscription to this service, you'll need the site-ID of Infineon
Technologies: It is 611. You can furthermore use this service to specifically query the Synopsys
knowledge database.

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

79Application Notes

1.4.133 Default values for ports, signals and variables may not be used (m)

Default values for ports, signals and variables are used in simulation, but not translated by synthe-
sis. Therefore, existence of such default values is very often the reason for simulation mismatches
between pre- and post-synthesis simulation. Instead of using default values, activate the reset of
storage elements at the beginning of the simulation.

1.4.134 Data types must be synthesizable (m)

The following data types are synthesizable:

❏ Enumeration

❏ Constrained integer. The constraint makes sure that correct bus-width is inferred.

❏ Arrays and arrays of arrays, provided that they are indexed by integers. Ranges must be
natural for std_(u)logic_vector.

❏ Records

Preferred data types for synthesis are

❏ std_(u)logic(_vector) as logic type

❏ constrained integer or (un)signed for arithmetic

❏ natural for array indices

❏ enumeration types for FSM states and other state descriptions

❏ Arrays of std_(u)logic_vector for memories

❏ Records for complex data-structures and improved readability

1.4.135 Use standard templates for clocked processes (r)

Several template structures let Synopsys Design Compiler infer registers. See the Synopsys
online documentation for more information (VHDL Compiler Reference Manual, Chapter 8, "Reg-
ister Inference", pp. 219 - 271). However, for safe and portable design, it is strongly recommended
not to rely on all of these templates, but rather to use the most common ones, i.e.
for register with asynchronous reset (such template is available in
emacshw under "VHDL" -> "Process"):

 async_res: process (clk, rst_n)
 begin
 if rst_n='0' then
 <actions to perform at asyn. reset>
 elsif clk'event and clk='1' then
 <actions_to_perform_at_pos_clock_edge>
 end if;
 end process async_res;

Clock and reset must be in the sensitivity list to avoid simulation mismatches pre- and post-syn-
thesis.

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes80

t e c h n o l o g i e s
Infineon

For register with synchronous reset (such template is available in emacshw under "VHDL"
-> "Process"):
 library synopsys; --<- put this in front
 use synopsys.attributes.all; --<- of the entity
 ...
 attribute sync_set_reset_local of --<- put this in decl.
 sync_res: label is "rst_sync"; --<- region of arch.
 ...
 sync_res: process (clk) --<- reset need not be
 begin -- in sensitivity list
 if clk'event and clk='1' then
 if rst_sync='0' then
 <actions_to_perform_at_sync_reset>
 else
 <actions_to_perform_at_pos_clock_edge>
 end if;
 end if;
 end process sync_res;

The attribute sync_set_reset_local is declared in the package synopsys.attributes. It must be
defined to force synthesis to implement the synchronous (re)set using a synchronously (re)setta-
ble flip-flop. Otherwise the synchronous (re)set would get merged with the logic in front of the flip-
flop's D-input. A flip-flop without synchronous (re)set pin would be used:

Template for latch:
 latch: process (gate, data) --<- put enable and
 begin -- data into the sensitivity
 if gate='1' then -- to avoid simulation
 q <= data; -- mismatches
 end if;
 end process latch;

Do not use wait to build registered processes.

1.4.136 Generics must have type integer (m)

This is a restriction of Synopsys Design Compiler. All modules that will be fed to synthesis should
follow this rule. We recommend, selecting such generics even if a behavioural architecture is
under development, and it is planned to further develop this architecture for synthesis. It may as

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

81Application Notes

well be planned to develop an alternative synthesizable architecture later. However, this architec-
ture refers to the same entity. It is efficient to stick to the same entity.

In addition, because of a restriction in SSE it is not allowed to use complex expressions in generic
maps. For example something like 2*width_g within a generic map cannot be resolved by the
makefile generator of SSE. Therefore, we recommend defining some constants in a global pack-
age, which then can be used within the generic maps.
Due to a further limitation the the identifiers of constants intended to be used as generics must be
unique throughout all packages in the project. The SSE makefile generator is currently not able to
handle constant value on a package base. The value read from the last package is considered
during the makefile generation only, independent of the actually referenced packages.

1.4.137 For soft-core development use generics, do not use constants (r)

Generics are the appropriate means for parameterizing re-usable soft-macros. In the past, there
have been problems with generic in synthesis, when the soft-macro had to be elaborated sepa-
rately. In this case, the generic values could not be calculated automatically from the instantiating
code. This is now performed by the tool ssemake, if the soft-macro resides in
the library work.

1.4.138 Place port and generic maps at the component instantiation (m)

Port and generic maps can be overridden in the configuration. However, Synopsys Design Com-
piler does not recognize such mappings. Therefore always map existing generics at the compo-
nent instance. Do not rely on default values.

1.4.139 Instantiated component and entity name must be equal, incl. casing
(m)

VHDL is case insensitive. Unfortunately, Synopsys Design Compiler does not follow this rule,
when linking designs and subdesigns. The component name and the underlying entity name must
be equal including case:
 ctrl: cfl --<- component name
 port map (...

 entity Cfl is --<- this entity name does not match
 ...

 entity cfl is --<- this entity name matches for DC
 ...

To minimize eventual problems it is recommended to use lowercase letters for entity and compo-
nent names generally.

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes82

t e c h n o l o g i e s
Infineon

1.4.140 Add an "others" statement to the FSM-switch (m)

The number of enumeration elements need not be 2**N. Adding a when others
assignment to the default state will make Design Compiler produce
an FSM without undecoded states.

1.4.141 All conditional assignments should be checked for completeness (r)

Incomplete conditional assignments lack a default statement or an else clause. This may lead to
unintended latch inference from non-clocked processes, as being used for combinational logic,
e.g. :
 latch: process (en)
 begin
 if en='1' then
 outbit <= pn_gen_ssrg_outbit;
 end if;
 end process latch;

Always use an else or a default clause:
 combo: process (en, pn_gen_ssrg_outbit)
 begin
 if en='1' then
 outbit <= pn_gen_ssrg_outbit;
 else
 outbit <= '1';
 end if;
 end process combo;

or a default assignment in front of the conditional structure:
 combo: process (en, pn_gen_ssrg_outbit)
 begin
 outbit <= '1';
 if en='1' then
 outbit <= pn_gen_ssrg_outbit;
 end if;
 end process combo;

For more information see "Avoid latches unless absolutely necessary".

1.4.142 The sensitivity list for combinational processes must be complete
(m)

Synopsys Design Compiler synthesizes combinational logic from processes like the following:
 combo: process (a, b, c)
 begin
 z <= a or (b xor c);
 end process combo;

The generated logic will react on any event on the inputs a, b or c, and so does the simulated
VHDL process. If one of the input signals is omitted in the sensitivity list, the list is called incom-
plete. Synopsys will generate the same logic, but simulation will produce different results for some
stimuli, which may be critical.

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

83Application Notes

Incomplete sensitivity lists may lead to pre-/post-synthesis simulation-mismatches. Unfortunately,
these may get unveiled late, when the circuit is already stable. Avoid incomplete sensitivity lists by
carefully checking the ssemake transcript for messages like:
 Elaboration of /home/hwpro/hw_alarm_chip/vob/...
 project_lib/gdbs/test.db
 finished on erle at Sat Dec 27 18:14:57 MET 1997
 Warning: Sensitivity list is not complete (SSE).
 Check logfile: logfiles/test_elab.log (SSE).

For simple combinational processes, consider modeling as a concurrent statement:
 z <= a or (b xor c);

Such concurrent statement is triggered, whenever one of its inputs has an event, i.e. this state-
ment has an implicitly complete sensitivity list.

1.4.143 Bit-wise association of arrays in port maps is not possible in
presence of generics (m)

This combination causes faulty results in synthesis with Synopsys Design Compiler.

1.4.144 Aliases may not be used in synthesized code (m)

Aliases are not synthesizable. They may therefore be used in testbench or behavioural code only.
In these codes, aliases may be used to increase readability:
 alias carry : std_ulogic := F(3);

1.4.145 Embedding scripts as meta comments is not acceptable (r)

Synthesis scripts must be appropriate for Synopsys' Design Compiler. These scripts must be
stored as separate files.

Meta comments are tool-specific up to now, leaving the model badly portable and maintainable.
The synthesis subset is under standardization, and with it are the meta comments (pragmas).
Therefore, wider use might get acceptable in the future.

1.4.146 Use only standard meta comments (r)

Meta comments are tool-specific up to now, leaving the model badly portable and maintainable.
The synthesis subset is under standardization, and with it are the meta comments (pragmas).
Therefore, wider use might get acceptable in the future.

Try to avoid other meta comments than:
 -- pragma synthesis_off
 -- M akes code invisible for synthesis.
 -- pragma synthesis_on

 -- pragma translate_off

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes84

t e c h n o l o g i e s
Infineon

 -- The same as synthesis_off/on, but if the dc-variable
 -- hdlin_translate_off_skip_text is set to “true”, the
 -- code will also be skipped by dc-analyze.
 -- pragma translate_on

 -- synopsys sde_make_gen_off
 -- Makes code invisible for sde_make_gen.
 -- synopsys sde_make_gen_on

CVE handles pragma synthesis_off/on in the right way, but pragma
translate_off/on has the same function than synthesis_off/on , because CVE
doesn’t know the dc-variables.

Also you should use these meta comments with care. They can cause a mismatch between pre-
and postsynthesis simulation.

1.4.147 Requirements for resource sharing (e)

Common resource block must be in

❏ same entity

❏ same process

❏ same if/case statement

Common resource block must never be needed in two places at the same time.

1.4.148 EMC and transmission line effects need not be modeled (a)

These effects are difficult to model in VHDL. The related problems must be solved using more
appropriate methods and programs.

1.4.149 Minimize the number of processes, signals and signal assignments
(a)

Signals are needed to communicate between processes and ports. Use only as many signals as
are needed to cover these tasks. Minimize the number of signals further, by merging processes
whenever feasible. Inside the processes, make use of variables.

Note that each concurrent signal assignment is handled as a process with a sensitivity list inside
the simulator.

In addition, resource sharing for synthesis works for a single process only.

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

85Application Notes

1.4.150 Replace signals by variables whenever possible (a)

Signals are much more complex objects than variables. For a signal, not only the current value has
to be stored, but also the last value, the last event, events scheduled in the future, etc. Variables
need not be scheduled into an event queue. Assignments take effect immediately. Therefore sim-
ulation speed and memory requirements can be improved a lot by using variables. This can be
done easily inside processes to

store intermediate values ("read after write") or even

store values for further processing in the next process activation ("read before write")

If the second option is chosen in a clocked process, then synthesis infers registers to store the
value for the next cycle. The following example illustrates this technique:
 var_regs: process (clk, rst_n)
 variable var_v : integer range 7 downto 0;
 begin
 if rst_n='0' then
 var_v := 0;
 dout_1cyc_deld <= 0;
 dout_2cyc_deld <= 0;
 elsif clk'event and clk='1' then
 dout_2cyc_deld <= var_v; --<- read var_v before write
 var_v := din;
 dout_1cyc_deld <= var_v; --<- read var_v after write
 end if;
 end process var_regs;

The signal dout_1cyc_deld gets the value of din after one cycle of latency. var_v serves as a tem-
porary variable in this case. It is written and read at the same clock edge. No register is generated
during synthesis for this read-operation. dout_2cyc_deld gets the din-value after two cycles of
latency. var_v stores each value until the process is resumed at the rising clock edge. Then the
value of var_v is read.

Note that this modeling style is supported by synthesis.

1.4.151 Inhibit execution of statements where not necessary (a)

Pure simulation models: Suspend processes completely up to wakeup event:
 stim: process
 begin
 get_word_p(dat, dest);
 wait until rdy_n='0'; --<-
 get_word_p(dat, dest);
 wait until rdy_n='0'; --<-
 ...
 wait; --<- forever (if no further action needed)
 end process stim;

Synthesizable models: Stick to the register template, create fast escapes. The enable signal may
be dynamic (signal) or static (generic, constant):
 format_frame: process (clk, rst_n)
 begin
 if rst_n='0' then
 ...

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes86

t e c h n o l o g i e s
Infineon

 elsif clk'event and clk='1' then
 if formatter_active then --<- fast escape
 ... <lots of code> -- here if
 -- inactive
 end if;
 end if;
 end process format_frame;

The process is still triggered by clk (and rst_n). However, the fast escape makes sure, that no cal-
culations are done unnecessarily. Do not move the deactivation if ... then to the top of the process.
Such process is not recognized by synthesis properly as registered process.

Synthesizable models: Deactivate code segments statically using generate ... if:
 rftune_gen: if mode=12 generate
 rftune: process (clk, rst_n)
 begin
 if rst_n='0' then
 ...
 elsif clk'event and clk='1' then
 ...
 end if;
 end process rftune;
 end generate rftune_gen;

Deactivation is not solely a technique for speeding simulation. These constructs are useful for syn-
thesis as well, if the spent area is justifiable. Deactivation in general saves dissipated power. There
is a relationship between simulation activity (events) and power dissipation.

1.4.152 Divide large memories into blocks (a)

such that each block is activated only if used. This will reduce the simulator process size (RAM-
requirement).

1.4.153 Do not use anonymous types (r)

These constructs are not allowed in synthesis. They are furthermore not very common, and tend
to make the model more complicated than necessary. These features are not crucial for circuit
modeling.

1.4.154 Do not use guarded signals, guarded assignments, and guarded
expressions (r)

These constructs are not allowed in synthesis. They are furthermore not very common, and tend
to make the model more complicated than necessary. These features are not crucial for circuit

modeling.

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.4 Rules with Details 1

87Application Notes

1.4.155 Do not use disconnect, register, and bus (r)

These constructs are not allowed in synthesis. They are furthermore not very common, and tend
to make the model more complicated than necessary. These features are not crucial for circuit
modeling.

1.4.156 Do not use port modes buffer and linkage (r)

These port modes have no physical counterpart. Once a buffer port is connected directly to
another port, which may be necessary to route signals through hierarchies, this port must be of
mode buffer as well. Thus, one buffer port potentially affects many other ports.

Instead, use just the modes in, out and inout. To read the value of an out port, use an intermediate
signal (an example is given in "Use an intermediate signal for reading from an output port").

1.4.157 Do not use blocks. Use entities instead to describe design hierarchy
(a)

Each block has a name space of its own. It can be used to define signals with the same name as
in the host architecture. This makes the model more difficult to understand, to re-use and maintain.

1.4.158 Use only well tested functions for object-initialization purposes (a)

Functions can be used at elaboration, to initialize constants, e.g.:
 constant propdel_c : real :=
 calc_propdel_f(load_q_c);

The function cannot be debugged, since it is carried out at elaboration, i.e. during the last stage of
smake. Therefore use only very robust functions for constant initialization. To debug the function,
move it temporarily to a concurrent region:
 -- constant propdel_c : real :=
 -- calc_propdel_f(load_q_c);
 signal propdel_debug : real;
 ...
 propdel_debug <= calc_propdel_f(load_q_c);

Put the breakpoint on the last line and step into the function.

Functions are sometimes used to load a constant data object from a file. However in SC-Highway
this is not recommended, since elaboration takes place in $HWPROJECT/project_lib/lfobj. A data
file location relative to that directory would be necessary ("Use relative pathnames for files
accessed through text-IO").

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes88

t e c h n o l o g i e s
Infineon

1.4.159 Concurrent procedures may not have any side effects (r)

Side effects are dangerous, since the model is difficult to understand and to maintain. There is
only one exception, where side effects are allowed: Procedures called many times in one process
(sequential code) may have side effects. For an example see "Switch constructs must not be
nested to more than 4 levels".

1.4.160 Avoid identifier hiding caused by loop index (r)

The index of a loop is implicitly defined. If another object with the same name exists, this object is
hidden in the loop-block. Chose a different index name in order to make the code better under-
standable and to avoid mistakes.
 hiding: process
 variable i_v : natural;
 variable accu_v : natural;
 begin
 i_v := 10;
 accu_v := 0;
 bad_loop: for i_v in 5 downto 2 loop
 accu_v := accu_v + i_v;
 end loop bad_loop;
 wait;
 end process hiding;

The variable i_v is not visible inside the loop. Upon exit of the loop i_v still has the value 10. accu_v
has the value 14.

1.4.161 Recursive use of subprograms is forbidden (m)

Not supported in formal verification (CVE) up to now.

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.5 Changes wrt. previous Versions 1

89Application Notes

1.5 Changes wrt. previous Versions

1.5.1 Changes wrt. VHDL Coding Guidelines v3.2

❏ Added rule 1.4.1 : Configuration must be in a separated file (m)

❏ Modified rule : VHDL-93 keywords should not be used (r)

❏ Modified rule : A configuration declaration is needed for each architecture in the design
(m)

❏ Removed rule : 1.4.56 process only one clock in RTL units (r)

❏ adapt guideline version to flow version scheme (IW2.0)

1.5.2 Changes wrt. VHDL Coding Guidelines v3.1

❏ Removed rule: Store each configuration into a separate file (m).

❏ Removed rule: Entity and architecture may not be stored within the same file (m).

❏ Removed rule: Use only lower-case names for unit directories (e).

❏ Removed rule: Memory instantiation (e).

❏ New rule: Store each VHDL unit into a separate file (r).

❏ Changed rule: Naming conventions for VHDL files (a).

❏ Changed rule: Store package header and body into same file (m).

❏ Changed Rule: Data types at chip and macro ports: std_(u)logic(_vector) (m).

❏ New rule: Spacer cells needed between pads (e).

❏ New rule: Avoid declaring constants within subprograms (a).

❏ New rule: Be aware of the use of the attributes DELAYED, STABLE, QUIET, and TRANS-
ACTION (a)

❏ New rule: Minimize the number of signals of your sensitivity list (a).

❏ New rule: Always use deallocate(access_obj) to dereference allocated memory
(r).

❏ New rule: Length of entity names should not exceed 32 characters (r).

❏ New rule: Multidimesional arrays can lead to mismatch between TRF file and Verilog netlist
(e).

❏ New rule: Component instantiations (e).

SC Highway Release 2.1,
June 26, 2000

 VHDL Coding Guidelines

Application Notes90

t e c h n o l o g i e s
Infineon

1.5.3 Changes wrt. VHDL Coding Guidelines v3.0

❏ Changed rule: A configuration declaration is needed for each architecture (m).

❏ Changed rule: Memory instantiation (e).

❏ New rule: Do not use combinational feedback loops (m).

1.5.4 Changes wrt. VHDL Coding Guidelines V2.5

❏ Removed rule: Insert a power-pin for each power-domain (m).

❏ New rule: Use only lower-case names for unit diretories (e).

❏ New rule: Do not use FSM attrbutes within the VHDL code (m).

❏ New rule: Entity and architecture may not be stored within the same file (m).

❏ Changed rule: Generics must have type integer (m).

t e c h n o l o g i e s
Infineon

A
p

p
lic

a
ti

o
n

 N
o

te
s

SC Highway Release 2.1,
June 26, 2000

1.6 Literature 1

91Application Notes

1.6 Literature

IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-1987, to be ordered from
Menchini & Associates, P.O.Box 71767, Durham, NC 27722-1767, USA, fax: +1 919-479-1671,
email: mench@mench.com, WWW: www.mench.com

❏ VHDL BNF as hypertext

❏ VHDL Glossary, VHDL International User's Forum

❏ Frequently Asked Questions, VHDL International User's Forum

❏ Newsgroup comp.lang.vhdl

❏ VHDL Modeling Guidelines, European Space Agency, Sept. 1994, Postscript, 118 Kbytes

❏ Guidelines for Writing VHDL Models in a Team Environment, J.Bergeron, Bell-Northern
Research Ltd. , Postscript, 290 Kbytes

❏ VHDL Simulations -Tips for Speeding, V.Madisetti

❏ Synopsys Online Documentation - VHDL Compiler Reference Manual

❏ VHDL Modeling Guide II (V.Preis et al., Siemens AG, ZT ME 5)

❏ Basic Design Rules, Siemens HL TS

❏ VHDL Coding Style, (Project SL), Ver. 02, H.Hiller, 18.5.1995, Siemens HL

❏ VHDL Coding Style Guidelines, Ver. 0.3, T.Baciglupo, Siemens HL

❏ OMI (Open Microprocessor systems Initiative), 1996, Lucent Technologies, Bell Labs Inno-
vations

http://tech-www.informatik.uni-hamburg.de/vhdl/tools/grammar/vhdl93-bnf.html

