EECS 318 CAD Computer Aided Design

LECTURE 1: Introduction

CAD Design approaches

- Goal of each CAD design flow methodology is to increase productivity of the design engineer
- Increasing the abstraction level of the design methodology and tools is one approach:

SoC: System on a Chip

The 2001 prediction: SoC's will be > 12M gates

- How do you create million gate ASICs with same amount of resources?
 - ...while
 - Decrease development time
 - Increase functionality and performance
 - Keep small design teams
 - Design Methodology (Design flow)
 - Tools that support the Methodology
 - IP reuse (Intellectual Property)

ASIC and SoC Design flow

Nand gate: behaviorial, transistor, layout

Adder: behavior, netlist, transistor, layout

Behavioral model

Structural model

- To appreciate why we need high level design techniques
- We need to look over the past 30 years of chip development and their growing complexity

Real transistor

- 3-D structure
- Real materials

Ref: http://www.msm.cam.ac.uk/dmg/teaching/m101999/Ch8/index.htm

Basic DRAM design

- DRAM replaces all but one transitors of flip-flop with a capacitor
- => smaller!
- Capacitor stores information
- Charge leakage requires periodic refreshment (sense & rewrite)

256Mb DRAM

- Increased vertical integration
- Word line passes over capacitor and contact
- Cell area $\sim 0.5 \mu m^2$
- Capacitor area smaller
 dielectric must be thinner
- =>higher quality dielectric required

Memory Technology: DRAM Evolution

DRAM evolution (II)

SoC: Intel Microprocessor History: 4004

1971 Intel 4004, 4-bit, 0.74 Mhz, 16 pins, 2250 Transistors

- Intel publicly introduced the world's first single chip microprocessor: U. S. Patent #3,821,715.
- Intel took the integrated circuit one step further, by placing CPU, memory, I/O on a single chip

SoC: Intel Microprocessor History: 8080

1974 Intel 8080, 8-bit, 2 Mhz, 40 pins, 4500 Transistors

Bill Gates & Paul Allen write their first Microsoft software product: Basic

SoC: Intel Microrocessor History: 8088

1979 Intel 8088, 16-bit internal, 8-bit external, 4.77 Mhz, 40 pins, 29000 Transistors

- 0.128M 0.640M RAM
- 0.360Kb, 5.25" Floppy
- 10M Hard Disk

SoC: Intel Processor History: Penitum Pro

1995 Intel Pentium Pro, 32-bit ,200 Mhz internal clock, 66 Mhz external, Superpipelining, 16Kb L1 cache, 256Kb L2 cache, 387 pins, 5.5 Million Transistors

silicon process technology 1.5µ 1.0µ 0.8µ 0.6µ 0.35µ 0.25µ

Intel® Pentium® III processors

Pentium® II processors

Pentium® Pro processor

Pentium® processor

Intel486™ DX processor

SoC: System on a chip (beyond Processor)

The 2001 prediction: SoC's will be > 12M gates

RR

