s {0

IR R !r:'-'t' "l:.'imz '
A . Ja o
Instructo rﬁ‘&ﬂlﬁﬁ e

| : - ' Case Western Jr JrPe i
THISTDrESENTALioN USES@awerboint animation: |

The Art of Memory System Design

Optimize the memory system organization
Workload or A I :
oy to minimize the average memory access time
programs for typical workloads
Processor

reference stream
<op,addr>, <op,addr>,<op,addr>,<op,addr>, . ..

op: i-fetch, read, write

Memory

MEM

Pipelining and the cache (pesigning...,M.J.Quinn, ‘87)
7 —

I
L;E}

Instruction Pipelining is the use of pipelining to allow more
than one instruction to be in some stage of execution at the
same time.

Ferranti ATLAS (1963):
* Pipelining reduced the average time per instruction by 375%
e Memory could not keep up with the CPU, needed a cache.

Cache memory is a small, fast memory unit used as a buffer
between a processor and primary memory

Principle of Locality

7 =
e Principle of Locality
states that programs access a relatively small portion
of their address space at any instance of time

(2

e Two types of locality

« Temporal locality (locality in time)
If an item Is referenced, then
the same item will tend to be referenced soon
“the tendency to reuse recently accessed data items”

e Spatial locality (locality in space)
If an item Is referenced, then
nearby items will be referenced soon
“the tendency to reference nearby data items”

Memory Hierarchy

7 =

Registers I

Pipelining I
Cache memory I
Primary real memory I

Virtual memory (Disk, swapping) I

Faster

Cheaper Cost $$$

I
L;E}

More Capacity

Memory Hierarchy of a Modern Computer System
7 —_—=
e By taking advantage of the principle of locality:

—Present the user with as much memory as is
available in the cheapest technology.

—Provide access at the speed offered by the fastest

—]

technology.
Processor
Control Tertiary
—- sqonday| | trag
Second Main (Diskg) (Disk)
Y o9 Level Memory
Datapath|< & T
T s3e) Cache (DRAM)
e ® 2 (SRAM)
\—_ \
Speed (ns): 1s 10s 100s 10,000,000s 10,000,000,000s
Size (bytes): 100s (10s ms) (10s sec)
Ks Ms Gs Ts

&

Cache Memory Technology: SRAM 1 bit cell layout

Figure 3. IBM’s 6-Transistor Memory Cell

Circuit Diagram

Word Line

Bit Line 0 = | I

P1 =~

Pl

M3

m—’j—

—1ETN2

—— GND

b Ls Bit Line 1
N4

=
e

53

Cell Layout

ELO BL1

Basic DRAM design

« DRAM replaces all
but one transitors of
flip-tlop with a
capacitor

Capacitor stores
information

Transistor

i Storage
Charge leakage Capacitor

requires periodic
refreshment (sense &
rewrite)

Memories Technology and Principle of Locality

&

e Faster Memories are more expensive per bit

« Slower Memories are usually smaller in area size per bit

Memory Typical access | $ per Mbyte in
Technology time 1997
SRAM 5-25 ns $100-$250
DRAM 60-120 ns $5-%$10
Magnetic Disk | 10-20 million ns $0.10-$0.20

(L —

&)

—

Cache Memory Technology: SRAM
» —

I
L;E}

 Why use SRAM (Static Random Access Memory)?

e Speed.
The primary advantage of an SRAM over DRAM is speed.

The fastest DRAMs on the market still require 5 to 10
processor clock cycles to access the first bit of data.

SRAMSs can operate at processor speeds of 250 MHz
and beyond, with access and cycle times
equal to the clock cycle used by the microprocessor

e Density.
when 64 Mb DRAMSs are rolling off the production lines,
the largest SRAMs are expected to be only 16 Mb.

see reference: http://www.chips.ibm.com/products/memory/sramoperations/sramop.htmi

Cache Memory Technology: SRAM (con’t)

e)
= PO — .,
g — . W]
R ———
e =

 Volatility.
Unlike DRAMs, SRAM cells do not need to be refreshed.
SRAMs are available 100% of the time for reading & writing.

e Cost.
If cost is the primary factor in a memory design,
then DRAMs win hands down.

If, on the other hand, performance is a critical factor,
then a well-designed SRAM is an effective cost
performance solution.

Memory Hierarchy of a Modern Computer Sy
7

stem
e By taking advantage of the principle of locality:

—Present the user with as much memory as is available in
the cheapest technology.

—Provide access at the speed offered by the fastest
technology.

e DRAM is slow but cheap and dense:

—Good choice for presenting the user with a BIG memory
system

« SRAM is fast but expensive and not very dense:

—Good choice for providing the user FAST access time.

Cache Terminology
M 7

L2

A hit if the data requested by the CPU is in the upper level

Hit rate or Hit ratio
IS the fraction of accesses found in the upper level
Hit time
IS the time required to access data in the upper level
= <detection time for hit or miss> + <hit access time>

A miss if the data is not found in the upper level

Miss rate or (1 — hit rate)
IS the fraction of accesses not found in the upper level
Miss penalty

IS the time required to access data in the lower level
= <lower access time>+<reload processor time>

Cache Example
»

|
o)

Time 1: Hit: In cache

Processor

Time 3: deliver to CPU

Hit time =Time 1

Miss penalty = Time 2 + Time 3

Basic Cache System

* S

Figure 1. Basic Cache System

Processor

| t
'] }

(gl

L2 PCI Bridge :
L2 -— Main
Memor
Cach Cache y a—b{ll :

Controller Controller

1—>FEI Bus

PCIISA Bridge

[IEA Bus

Cache Memory Technology: SRAM Block diagram
7 ———

H}

Figure 2. Simplified Block Diagram of a Synchronous SRAM

A, A, .. CLKWECS ..

SRR

Addresses Control Signals

Memory Array

May be
Register —~ Data Outputs

or Latch
b obr .

Do —-
O

Data Inputs

L

Cache Memory Technology: SRAM timing diagram

= T =

L1 (1]
i)

)

—

Figure 4. Reading from Memory (Flow Thru mode)

[|
1 c}rnle——l

LY o
CLK D)
N S ! Fs h ! s N, S

, i’ , ; .

|
ADDR vzl om0 oA W A Y

F -,LI

Setup'Hold
Chip Select N = S

|
|
e TN
CS or 55
= .
I

Write Enable AL
(WE) /////Setup

......

|
|
|
|
Output Enable WY
(OE) oo, (8 |
|
|
I
|
|

~~~~~

Data Qutput

| .
(0Q) | pao X [pal X | DQ2

|

|

Note: DQO is the data associated with Address 0 (AD). DQ1 is the data associated with Address 1 (A1).



Direct Mapped Cache
7 ———

L2

e Direct Mapped: assign the cache location based on the
address of the word in memory

e cache_address = memory_address modulo cache_size;

Cache

000
001
010
011
100
101
110
111

00001 00101 01001 01101 10001 10101 11001 11101

Memory

Observe there is a Many-to-1 memory to cache relationship



Direct Mapped Cache: Data Structure
A =

L2

There is a Many-to-1 relationship between memory and cache

How do we know whether the data in the cache corresponds
to the requested word?

tags
e contain the address information required to identify

whether a word in the cache corresponds to the
requested word.

e tags need only to contain the upper portion of the
memory address (often referred to as a page address)

valid bit
e iIndicates whether an entry contains a valid address




Direct Mapped Cache: Temporal Example

&

]
L;E}

lw  $1,10 110 ($0)  MUESREULEE |\  $1,22($0)
lw  $2,11 010 ($0) Miss: valid w  $2,26($0)
lw $3,10 110 ($0) lw $3,22($0)
Index | Valid Data
000 N
001 N
010 Y 11 Memory[11010]
011 N
100 N
101 N
110 Y 10 Memory[10110]
111 N




Direct Mapped Cache: Worst case, always miss!

lw  $1,10 110 ($0)  MUESREULEE |\  $1,22($0)
lw $2,11 110 ($0) Miss: tag W $2,30($0)
lw $3,00 110 ($0) Miss: tag W $3,6($0)

Index | Valid Data

000 N

001

010

011

100

101

110

111




Direct Mapped Cache: Mips Architecture

1021

—

Il
(g

Data I

Compare Tags I



Bits in a Direct Mapped Cache

i ——¢
= (L —

()

How many total bits are required for a direct mapped cache
with 64KB (= 216 KiloBytes) of data
and one word (=32 bit) blocks
assuming a 32 bit byte memory address?

Cache index width =log, words
=log, 21%/4 = log, 2% words = 14 bits

Block address width = <byte address width> - log, word
=32 -2 =30 bits
Tag size = <block address width> — <cache index width>
=30 - 14 = 16 bits
Cache block size = <valid size>+<tag size>+<block data size>
=1 bit + 16 bits + 32 bits = 49 bits
Total size = <Cache word size> x <Cache block size>

= 214 words x 49 hits =784 x 210 = 784 Kbits = 98 KB
= 98 KB/64 KB = 1.5 times overhead



Split Cache: Exploiting the Harvard Architectures

ALU 1/0
Address bus
Instructions

and Instructions data

data
Von Neuman architecture Harvard architecture was
Area efficient but requires coined to describe machines
higher bus bandwidth with separate memories.

because instructions and data Speed efficient: Increased
must compete for memory. parallelism (split cache).



Modern Systems: Pentium Pro and PowerPC

X

I
8

Cache: uses Harvard
Architecture separate
Instruction/Data caches

RAM (main memory) . von
. Neuman Architecture

Characteristic Intel Pentium Pro PowerPC 604
Cache organization Split instruction and data caches |Split intruction and data caches
Cache size 8 KB each for instructions/data |16 KB each for instructions/data
Cache associativity Four-way set associative Four-way set associative
Replacement Approximated LRU replacement |LRU replacement
Block size 32 bytes 32 bytes
White policy Write-back Write-back or write-through




Cache schemes

2)

|
L2

7

write-through cache Chip Area  Speed

Always write the data into both the
cache and memory and then wait for memory.

write buffer
write data into cache and write buffer.
If write buffer full processor must stall.

No amount of buffering can help
If writes are being generated faster
than the memory system can accept them.

write-back cache
Write data into the cache block and
only write to memory when block is modified
but complex to implement in hardware.




Hits vs. Misses
7 =

|
(2

e Read hits
—this I1s what we want!

e Read misses

—stall the CPU, fetch block from memory,
deliver to cache, and restart.

o Write hits
—write-through: can replace data in cache and memory.
—write-buffer: write data into cache and buffer.
—write-back: write the data only into the cache.

o Write misses
—read the entire block into the cache, then write the word.




Example: The DECStation 3100 cache

7 =

I
L;E}

DECStation uses a write-through_harvard architecture cache
« 128 KB total cache size (=32K words)
= 64 KB instruction cache (=16K words)
* + 64 KB data cache (=16K words)

« 10 processor clock cycles to write to memory



The DECStation 3100 miss rates

&

—_—— — )

=
L] |
a_ 7
—

* A split instruction and data cache increases the bandwidth

1.2% miss, also means
that 98.2% of the time it
IS In the cache. So

using a cache pays off!

Why a lower miss rate?

Benchmark gcc | spice
Program
Instruction 6.1% | 1.2%
mISS rate
Data 2.1% 1.ﬁ
mISS rate
Effective split | 5.4% | 1.2%
mISS rate
Combined miss | 4.8%
rate

Numerical programs
tend to consist of a lot

of small program loops

split cache has slightly
worse miss rate



Review: Principle of Locality

7 =
e Principle of Locality
states that programs access a relatively small portion
of their address space at any instance of time

(2

e Two types of locality

« Temporal locality (locality in time)
If an item Is referenced, then
the same item will tend to be referenced soon
“the tendency to reuse recently accessed data items”

e Spatial locality (locality in space)
If an item Is referenced, then
nearby items will be referenced soon
“the tendency to reference nearby data items”




Spatial Locality
» —

|
(2

« Temporal only cache
cache block contains only one word (No spatial locality).

e Spatial locality
Cache block contains multiple words.

« When a miss occurs, then fetch multiple words.

« Advantage
Hit ratio increases because there is a high
probability that the adjacent words will be
needed shortly.

e Disadvantage
Miss penalty increases with block size



Spatial Locality: 64 KB cache, 4 words

7 —
 64KB cache using four-word (16-byte word)
* 16 bit tag, 12 bit mdex 2 blt block offset, 2 bit byte offset.

31 16 15 -43210

12 J2 ByteD

(2

H ~N N ~
Hit Tag N N OffSEt Data
Index Block offset
16 bits‘ 128 bits
Vo Tag A Data
?
— [ ] ? ] (] 4K [
entries
v
\\16 \\32 \\32 \\32 \\32
(=
} 3 ~
Mux
((mux )
332




Performance

o)

e Use split caches because there is more spatial locality in
code:

Program gcc gcc | spice | spice
Block size =1 =4 =1 =4
Instruction 6.1% | 2.0% | 1.2% | 0.3%
mISS rate
Data 2.1% | 1.7% | 1.3% | 0.6%
mISS rate
Effective split | 5.4% | 1.9% | 1.2% | 0.4%
mISS rate ;
Combined miss / 4.8% | 4.8%
rate

Temporal only split cache:

has slightly worse miss rate



Cache Block size Performance
7 =

|
(2

e Increasing the block size tends to decrease miss rate:

40%
35% |- -\
30%
=T \.\ /
20%
15% = \
10% —

-~— «--.--.-.-----"""""'--1|r—

Miss rate

‘.7 4‘
5% | —o— —@
*— ——
S —p =
4 16 64 256
Block size (bytes) w1l KBO
e 8 KB
® 16 KBO
® 64 KBO

® 256 KB



