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Full Adder:  Truth Table
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Combinatorial Logic Operators

AND z <= x AND y;

NAND z <= NOT (x AND y);

NOR z <= NOT (x OR Y);

OR z <= x OR y;

NOT z <= NOT (x);   z<= NOT x;

XOR z <= (x and NOT y) OR (NOT x AND y);

XNOR z <= (x and y) OR (NOT x AND NOT y);
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Full Adder:  Architecture

ENTITY full_adder IS
     PORT (x, y, z: IN std_logic;

      Sum, Carry: OUT std_logic
); END full_adder;

ENTITY full_adder IS
     PORT (x, y, z: IN std_logic;

      Sum, Carry: OUT std_logic
); END full_adder;

ARCHITECTURE full_adder_arch_1 OF  full_adder  IS

BEGIN

Sum <= ( ( x XOR y ) XOR z );

Carry <= (( x AND y ) OR (z AND (x AND y)));

END full_adder_arch_1;

ARCHITECTURE full_adder_arch_1 OF  full_adder  IS

BEGIN

Sum <= ( ( x XOR y ) XOR z );

Carry <= (( x AND y ) OR (z AND (x AND y)));

END full_adder_arch_1;

Optional Architecture END name;Optional Architecture END name;

Entity DeclarationEntity Declaration

Optional Entity END name;Optional Entity END name;

Architecture DeclarationArchitecture Declaration
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SIGNAL: Scheduled Event

• SIGNAL
Like variables in a programming language such as C,
signals can be assigned values, e.g. 0, 1

• However, SIGNALs also have an associated time value
A signal receives a value at a specific point in time
and retains that value until it receives a new value

at a future point in time (i.e. scheduled event)

• For example
         wave <= ‘0’, ‘1’ after 10 ns, ‘0’ after 15 ns, ‘1’ after 25 ns;

• The waveform of the signal is
a sequence of values assigned to a signal over time
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Full Adder:  Architecture with Delay

ARCHITECTURE full_adder_arch_2 OF  full_adder  IS
SIGNAL S1, S2, S3: std_logic;

BEGIN
s1      <= ( a XOR b )        after 15 ns;
s2      <= ( c_in AND s1 ) after 5 ns;
s3      <= ( a AND b )        after 5 ns;
Sum  <= ( s1 XOR c_in ) after 15 ns;
Carry <= ( s2 OR s3 )      after 5 ns;

END;

ARCHITECTURE full_adder_arch_2 OF  full_adder  IS
SIGNAL S1, S2, S3: std_logic;

BEGIN
s1      <= ( a XOR b )        after 15 ns;
s2      <= ( c_in AND s1 ) after 5 ns;
s3      <= ( a AND b )        after 5 ns;
Sum  <= ( s1 XOR c_in ) after 15 ns;
Carry <= ( s2 OR s3 )      after 5 ns;

END;

Signals (like wires)
are not PORTs they
do not have
direction
(i.e. IN, OUT)

Signals (like wires)
are not PORTs they
do not have
direction
(i.e. IN, OUT)
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Signal order:

ARCHITECTURE full_adder_arch_3 OF  full_adder  IS
SIGNAL S1, S2, S3: std_logic;

BEGIN
Carry <= ( s2 OR s3 )      after 5 ns;
Sum  <= ( s1 XOR c_in ) after 15 ns;
s3      <= ( a AND b )        after 5 ns;
s2      <= ( c_in AND s1 ) after 5 ns;
s1      <= ( a XOR b )        after 15 ns;

END;

ARCHITECTURE full_adder_arch_3 OF  full_adder  IS
SIGNAL S1, S2, S3: std_logic;

BEGIN
Carry <= ( s2 OR s3 )      after 5 ns;
Sum  <= ( s1 XOR c_in ) after 15 ns;
s3      <= ( a AND b )        after 5 ns;
s2      <= ( c_in AND s1 ) after 5 ns;
s1      <= ( a XOR b )        after 15 ns;

END;

ARCHITECTURE full_adder_arch_2 OF  full_adder  IS
SIGNAL S1, S2, S3: std_logic;

BEGIN
s1      <= ( a XOR b )        after 15 ns;
s2      <= ( c_in AND s1 ) after 5 ns;
s3      <= ( a AND b )        after 5 ns;
Sum  <= ( s1 XOR c_in ) after 15 ns;
Carry <= ( s2 OR s3 )      after 5 ns;

END;

ARCHITECTURE full_adder_arch_2 OF  full_adder  IS
SIGNAL S1, S2, S3: std_logic;

BEGIN
s1      <= ( a XOR b )        after 15 ns;
s2      <= ( c_in AND s1 ) after 5 ns;
s3      <= ( a AND b )        after 5 ns;
Sum  <= ( s1 XOR c_in ) after 15 ns;
Carry <= ( s2 OR s3 )      after 5 ns;

END;

No,
this
is
not
C!

Net-
lists
have
same
beha
vior
&
paral
lel

No,
this
is
not
C!

Net-
lists
have
same
beha
vior
&
paral
lel

Does it matter? No
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The Ripple-Carry n-Bit Binary Parallel Adder
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Hierarchical design: 2-bit adder

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

ENTITY adder_bits_2 IS

PORT (Cin: IN     std_logic;
     a0, b0, a1, b1: IN     std_logic;
     S0, S1: OUT std_logic;
     Cout: OUT std_logic

); END;

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

ENTITY adder_bits_2 IS

PORT (Cin: IN     std_logic;
     a0, b0, a1, b1: IN     std_logic;
     S0, S1: OUT std_logic;
     Cout: OUT std_logic

); END;

• The design interface to a two bit adder is

• Note: that the ports are positional dependant
 (Cin, a0, b0, a1, b1, S0, S1, Cout)
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Hierarchical design: Component Instance

ARCHITECTURE ripple_2_arch OF adder_bits_2 IS

COMPONENT full_adder
PORT (x, y, z: IN std_logic; Sum, Carry: OUT std_logic);

END COMPONENT;

SIGNAL t1: std_logic;

BEGIN
FA1: full_adder PORT MAP (Cin, a0, b0, S0, t1);

FA2: full_adder PORT MAP (t1, a1, b1, s1, Cout);

END;
Component instance #1 called FA1Component instance #1 called FA1

Component instance #2 called FA2Component instance #2 called FA2

Component DeclarationComponent Declaration
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Positional versus Named Association

FA1: full_adder PORT MAP (Cin, a0, b0, S0, t1);

FA1: full_adder PORT

MAP (Cin=>x, a0=>y, b0=>z, S0=>Sum, t1=>Carry);

FA1: full_adder PORT

MAP (Cin=>x, a0=>y, b0=>z, S0=>Sum, t1=>Carry);

• Positional Association (must match the port order)

• Named Association: signal => port_name

FA1: full_adder PORT

MAP (Cin=>x, a0=>y, b0=>z, t1=>Carry, S0=>Sum);

FA1: full_adder PORT

MAP (Cin=>x, a0=>y, b0=>z, t1=>Carry, S0=>Sum);

FA1: full_adder PORT

MAP (t1=>Carry, S0=>Sum, a0=>y, b0=>z, Cin=>x);

FA1: full_adder PORT

MAP (t1=>Carry, S0=>Sum, a0=>y, b0=>z, Cin=>x);
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Component by Named Association

ARCHITECTURE ripple_2_arch OF adder_bits_2 IS

COMPONENT full_adder
PORT (x, y, z: IN std_logic; Sum, Carry: OUT std_logic);

END COMPONENT;

SIGNAL t1: std_logic; -- Temporary carry signal

BEGIN

-- Named association
FA1: full_adder PORT

MAP (Cin=>x, a0=>y, b0=>z, S0=>Sum, t1=>Carry);

-- Positional association
FA2: full_adder PORT MAP (t1, a1, b1, s1, Cout);

END;
-- Comments start with a double dash-- Comments start with a double dash
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Using vectors: std_logic_vector

ENTITY adder_bits_2 IS
PORT (Cin: IN     std_logic;

     a0, b0, a1, b1: IN     std_logic;
     S0, S1: OUT std_logic;
     Cout: OUT std_logic

);  END;

ENTITY adder_bits_2 IS
PORT (Cin: IN     std_logic;

     a0, b0, a1, b1: IN     std_logic;
     S0, S1: OUT std_logic;
     Cout: OUT std_logic

);  END;

• By using vectors, there is less typing of variables, a0, a1, ...

ENTITY adder_bits_2 IS
PORT (Cin: IN     std_logic;

     a, b: IN     std_logic_vector(1 downto 0);
     S: OUT std_logic_vector(1 downto 0);
     Cout: OUT std_logic

);  END;

ENTITY adder_bits_2 IS
PORT (Cin: IN     std_logic;

     a, b: IN     std_logic_vector(1 downto 0);
     S: OUT std_logic_vector(1 downto 0);
     Cout: OUT std_logic

);  END;
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2-bit Ripple adder using std_logic_vector

ARCHITECTURE ripple_2_arch OF adder_bits_2 IS

COMPONENT full_adder
PORT (x, y, z: IN std_logic; Sum, Carry: OUT std_logic);

END COMPONENT;

SIGNAL t1: std_logic; -- Temporary carry signal

BEGIN

FA1: full_adder PORT MAP (Cin, a(0), b(0), S(0), t1);

FA2: full_adder PORT MAP (t1, a(1), b(1), s(1), Cout);

END;

• Note, the signal variable usage is now different:
a0 becomes a(0)
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4-bit Ripple adder using std_logic_vector

ARCHITECTURE ripple_4_arch OF adder_bits_4 IS

COMPONENT full_adder
PORT (x, y, z: IN std_logic; Sum, Carry: OUT std_logic);

END COMPONENT;

SIGNAL t: std_logic_vector(3 downto 1);

BEGIN

FA1: full_adder PORT MAP (Cin, a(0), b(0), S(0), t(1));
FA2: full_adder PORT MAP (t(1), a(1), b(1), S(1), t(2));

FA3: full_adder PORT MAP (t(2), a(2), b(2), S(2), t(3));

FA4: full_adder PORT MAP (t(3), a(3), b(3), S(3), Cout);

END;

• std_vectors make it easier to replicate structures• std_vectors make it easier to replicate structures
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For-Generate statement: first improvement

ARCHITECTURE ripple_4_arch OF adder_bits_4 IS

COMPONENT full_adder
PORT (x, y, z: IN std_logic; Sum, Carry: OUT std_logic);

END COMPONENT;

SIGNAL     t: std_logic_vector(3 downto 1);
CONSTANT n: INTEGER := 4;

BEGIN

FA1: full_adder PORT MAP (Cin, a(0), b(0), S(0), t(1));
FA2: full_adder PORT MAP (t(1), a(1), b(1), S(1), t(2));

FA3: full_adder PORT MAP (t(2), a(2), b(2), S(2), t(3));

FA4: full_adder PORT MAP (t(n), a(n), b(n), S(n), Cout);

END;

Constants never change valueConstants never change value

FA_f: for i in 1 to n-2 generate
FA_i: full_adder PORT MAP (t(i), a(i), b(i), S(i), t(i+1));

end generate;

LABEL: before the for is not optionalLABEL: before the for is not optional
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For-Generate statement: second improvement

ARCHITECTURE ripple_4_arch OF adder_bits_4 IS

COMPONENT full_adder
PORT (x, y, z: IN std_logic; Sum, Carry: OUT std_logic);

END COMPONENT;

SIGNAL        t: std_logic_vector(4 downto 0);
CONSTANT n: INTEGER := 4;

BEGIN

t(0)   <= Cin; Cout <= t(n);

FA_f: for i in 0 to n-1 generate
FA_i: full_adder PORT MAP (t(i), a(i), b(i), S(i), t(i+1));

end generate;

END;

Keep track of vector sizesKeep track of vector sizes
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N-bit adder using generic

• By using generics, the design can be generalized

ENTITY adder_bits_4 IS

   PORT (Cin: IN     std_logic;
    a, b: IN     std_logic_vector(3 downto 0);
    S: OUT std_logic_vector(3 downto 0);
    Cout: OUT std_logic

);  END;

ENTITY adder_bits_4 IS

   PORT (Cin: IN     std_logic;
    a, b: IN     std_logic_vector(3 downto 0);
    S: OUT std_logic_vector(3 downto 0);
    Cout: OUT std_logic

);  END;

ENTITY adder_bits_n IS

  PORT (Cin: IN     std_logic;
   a, b: IN     std_logic_vector(n-1 downto 0);
   S: OUT std_logic_vector(n-1 downto 0);
   Cout: OUT std_logic

);  END;

ENTITY adder_bits_n IS

  PORT (Cin: IN     std_logic;
   a, b: IN     std_logic_vector(n-1 downto 0);
   S: OUT std_logic_vector(n-1 downto 0);
   Cout: OUT std_logic

);  END;

 GENERIC(n: INTEGER := 2);

Default case is 2Default case is 2

      a, b: IN     std_logic_vector(n-1 downto 0);
   S: OUT std_logic_vector(n-1 downto 0);
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For-Generate statement: third improvement

ARCHITECTURE ripple_n_arch OF adder_bits_n IS

    COMPONENT full_adder
PORT (x, y, z: IN std_logic; Sum, Carry: OUT std_logic);

    END COMPONENT;

    SIGNAL        t: std_logic_vector(n downto 0);
BEGIN

    t(0)   <= Cin; Cout <= t(n);

    FA: for i in 0 to n-1 generate
FA_i: full_adder PORT MAP (t(i), a(i), b(i), S(i), t(i+1));

    end generate;

END;
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Stimulus Only Test Bench Architecture

ARCHITECTURE tb OF tb_adder_4 IS
    COMPONENT adder_bits_n

GENERIC(n: INTEGER := 2);
PORT ( Cin: IN     std_logic;
    a, b: IN     std_logic_vector(n-1 downto 0);
    S: OUT std_logic_vector(n-1 downto 0);
    Cout: OUT std_logic

    END COMPONENT;

    SIGNAL        x, y, Sum:      std_logic_vector(n downto 0);
    SIGNAL        c, Cout:          std_logic;
BEGIN
     x <= “0000”, “0001” after 50 ns, “0101”, after 100 ns;
     y <= “0010”, “0011” after 50 ns, “1010”, after 100 ns;
     c <= ‘1’, ‘0’ after 50 ns;
     UUT_ADDER_4: adder_bits_n GENERIC MAP(4) 

PORT MAP (c, x, y, Sum, Cout);
END;

Override
default

Override
default
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Stimulus Only Test Bench Entity

ENTITY tb_adder_4 IS

PORT (Sum: std_logic_vector(3 downto 0);

Cout: std_logic
); END;

The output of the testbench will be observe by the digital

waveform of the simulator.


