
CWRU EECS 318

EECS 318 CAD
Computer Aided Design

EECS 318 CAD
Computer Aided Design

LECTURE 3:
The VHDL N-bit Adder

LECTURE 3:
The VHDL N-bit Adder

Instructor: Francis G. Wolff
 wolff@eecs.cwru.edu

 Case Western Reserve University

CWRU EECS 318

Full Adder: Truth Table

CWRU EECS 318

Combinatorial Logic Operators

AND z <= x AND y;

NAND z <= NOT (x AND y);

NOR z <= NOT (x OR Y);

OR z <= x OR y;

NOT z <= NOT (x); z<= NOT x;

XOR z <= (x and NOT y) OR (NOT x AND y);

XNOR z <= (x and y) OR (NOT x AND NOT y);

CWRU EECS 318

Full Adder: Architecture

ENTITY full_adder IS
 PORT (x, y, z: IN std_logic;

 Sum, Carry: OUT std_logic
); END full_adder;

ENTITY full_adder IS
 PORT (x, y, z: IN std_logic;

 Sum, Carry: OUT std_logic
); END full_adder;

ARCHITECTURE full_adder_arch_1 OF full_adder IS

BEGIN

Sum <= ((x XOR y) XOR z);

Carry <= ((x AND y) OR (z AND (x AND y)));

END full_adder_arch_1;

ARCHITECTURE full_adder_arch_1 OF full_adder IS

BEGIN

Sum <= ((x XOR y) XOR z);

Carry <= ((x AND y) OR (z AND (x AND y)));

END full_adder_arch_1;

Optional Architecture END name;Optional Architecture END name;

Entity DeclarationEntity Declaration

Optional Entity END name;Optional Entity END name;

Architecture DeclarationArchitecture Declaration

CWRU EECS 318

SIGNAL: Scheduled Event

• SIGNAL
Like variables in a programming language such as C,
signals can be assigned values, e.g. 0, 1

• However, SIGNALs also have an associated time value
A signal receives a value at a specific point in time
and retains that value until it receives a new value

at a future point in time (i.e. scheduled event)

• For example
 wave <= ‘0’, ‘1’ after 10 ns, ‘0’ after 15 ns, ‘1’ after 25 ns;

• The waveform of the signal is
a sequence of values assigned to a signal over time

CWRU EECS 318

Full Adder: Architecture with Delay

ARCHITECTURE full_adder_arch_2 OF full_adder IS
SIGNAL S1, S2, S3: std_logic;

BEGIN
s1 <= (a XOR b) after 15 ns;
s2 <= (c_in AND s1) after 5 ns;
s3 <= (a AND b) after 5 ns;
Sum <= (s1 XOR c_in) after 15 ns;
Carry <= (s2 OR s3) after 5 ns;

END;

ARCHITECTURE full_adder_arch_2 OF full_adder IS
SIGNAL S1, S2, S3: std_logic;

BEGIN
s1 <= (a XOR b) after 15 ns;
s2 <= (c_in AND s1) after 5 ns;
s3 <= (a AND b) after 5 ns;
Sum <= (s1 XOR c_in) after 15 ns;
Carry <= (s2 OR s3) after 5 ns;

END;

Signals (like wires)
are not PORTs they
do not have
direction
(i.e. IN, OUT)

Signals (like wires)
are not PORTs they
do not have
direction
(i.e. IN, OUT)

CWRU EECS 318

Signal order:

ARCHITECTURE full_adder_arch_3 OF full_adder IS
SIGNAL S1, S2, S3: std_logic;

BEGIN
Carry <= (s2 OR s3) after 5 ns;
Sum <= (s1 XOR c_in) after 15 ns;
s3 <= (a AND b) after 5 ns;
s2 <= (c_in AND s1) after 5 ns;
s1 <= (a XOR b) after 15 ns;

END;

ARCHITECTURE full_adder_arch_3 OF full_adder IS
SIGNAL S1, S2, S3: std_logic;

BEGIN
Carry <= (s2 OR s3) after 5 ns;
Sum <= (s1 XOR c_in) after 15 ns;
s3 <= (a AND b) after 5 ns;
s2 <= (c_in AND s1) after 5 ns;
s1 <= (a XOR b) after 15 ns;

END;

ARCHITECTURE full_adder_arch_2 OF full_adder IS
SIGNAL S1, S2, S3: std_logic;

BEGIN
s1 <= (a XOR b) after 15 ns;
s2 <= (c_in AND s1) after 5 ns;
s3 <= (a AND b) after 5 ns;
Sum <= (s1 XOR c_in) after 15 ns;
Carry <= (s2 OR s3) after 5 ns;

END;

ARCHITECTURE full_adder_arch_2 OF full_adder IS
SIGNAL S1, S2, S3: std_logic;

BEGIN
s1 <= (a XOR b) after 15 ns;
s2 <= (c_in AND s1) after 5 ns;
s3 <= (a AND b) after 5 ns;
Sum <= (s1 XOR c_in) after 15 ns;
Carry <= (s2 OR s3) after 5 ns;

END;

No,
this
is
not
C!

Net-
lists
have
same
beha
vior
&
paral
lel

No,
this
is
not
C!

Net-
lists
have
same
beha
vior
&
paral
lel

Does it matter? No

CWRU EECS 318

The Ripple-Carry n-Bit Binary Parallel Adder

CWRU EECS 318

Hierarchical design: 2-bit adder

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

ENTITY adder_bits_2 IS

PORT (Cin: IN std_logic;
 a0, b0, a1, b1: IN std_logic;
 S0, S1: OUT std_logic;
 Cout: OUT std_logic

); END;

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

ENTITY adder_bits_2 IS

PORT (Cin: IN std_logic;
 a0, b0, a1, b1: IN std_logic;
 S0, S1: OUT std_logic;
 Cout: OUT std_logic

); END;

• The design interface to a two bit adder is

• Note: that the ports are positional dependant
 (Cin, a0, b0, a1, b1, S0, S1, Cout)

CWRU EECS 318

Hierarchical design: Component Instance

ARCHITECTURE ripple_2_arch OF adder_bits_2 IS

COMPONENT full_adder
PORT (x, y, z: IN std_logic; Sum, Carry: OUT std_logic);

END COMPONENT;

SIGNAL t1: std_logic;

BEGIN
FA1: full_adder PORT MAP (Cin, a0, b0, S0, t1);

FA2: full_adder PORT MAP (t1, a1, b1, s1, Cout);

END;
Component instance #1 called FA1Component instance #1 called FA1

Component instance #2 called FA2Component instance #2 called FA2

Component DeclarationComponent Declaration

CWRU EECS 318

Positional versus Named Association

FA1: full_adder PORT MAP (Cin, a0, b0, S0, t1);

FA1: full_adder PORT

MAP (Cin=>x, a0=>y, b0=>z, S0=>Sum, t1=>Carry);

FA1: full_adder PORT

MAP (Cin=>x, a0=>y, b0=>z, S0=>Sum, t1=>Carry);

• Positional Association (must match the port order)

• Named Association: signal => port_name

FA1: full_adder PORT

MAP (Cin=>x, a0=>y, b0=>z, t1=>Carry, S0=>Sum);

FA1: full_adder PORT

MAP (Cin=>x, a0=>y, b0=>z, t1=>Carry, S0=>Sum);

FA1: full_adder PORT

MAP (t1=>Carry, S0=>Sum, a0=>y, b0=>z, Cin=>x);

FA1: full_adder PORT

MAP (t1=>Carry, S0=>Sum, a0=>y, b0=>z, Cin=>x);

CWRU EECS 318

Component by Named Association

ARCHITECTURE ripple_2_arch OF adder_bits_2 IS

COMPONENT full_adder
PORT (x, y, z: IN std_logic; Sum, Carry: OUT std_logic);

END COMPONENT;

SIGNAL t1: std_logic; -- Temporary carry signal

BEGIN

-- Named association
FA1: full_adder PORT

MAP (Cin=>x, a0=>y, b0=>z, S0=>Sum, t1=>Carry);

-- Positional association
FA2: full_adder PORT MAP (t1, a1, b1, s1, Cout);

END;
-- Comments start with a double dash-- Comments start with a double dash

CWRU EECS 318

Using vectors: std_logic_vector

ENTITY adder_bits_2 IS
PORT (Cin: IN std_logic;

 a0, b0, a1, b1: IN std_logic;
 S0, S1: OUT std_logic;
 Cout: OUT std_logic

); END;

ENTITY adder_bits_2 IS
PORT (Cin: IN std_logic;

 a0, b0, a1, b1: IN std_logic;
 S0, S1: OUT std_logic;
 Cout: OUT std_logic

); END;

• By using vectors, there is less typing of variables, a0, a1, ...

ENTITY adder_bits_2 IS
PORT (Cin: IN std_logic;

 a, b: IN std_logic_vector(1 downto 0);
 S: OUT std_logic_vector(1 downto 0);
 Cout: OUT std_logic

); END;

ENTITY adder_bits_2 IS
PORT (Cin: IN std_logic;

 a, b: IN std_logic_vector(1 downto 0);
 S: OUT std_logic_vector(1 downto 0);
 Cout: OUT std_logic

); END;

CWRU EECS 318

2-bit Ripple adder using std_logic_vector

ARCHITECTURE ripple_2_arch OF adder_bits_2 IS

COMPONENT full_adder
PORT (x, y, z: IN std_logic; Sum, Carry: OUT std_logic);

END COMPONENT;

SIGNAL t1: std_logic; -- Temporary carry signal

BEGIN

FA1: full_adder PORT MAP (Cin, a(0), b(0), S(0), t1);

FA2: full_adder PORT MAP (t1, a(1), b(1), s(1), Cout);

END;

• Note, the signal variable usage is now different:
a0 becomes a(0)

CWRU EECS 318

4-bit Ripple adder using std_logic_vector

ARCHITECTURE ripple_4_arch OF adder_bits_4 IS

COMPONENT full_adder
PORT (x, y, z: IN std_logic; Sum, Carry: OUT std_logic);

END COMPONENT;

SIGNAL t: std_logic_vector(3 downto 1);

BEGIN

FA1: full_adder PORT MAP (Cin, a(0), b(0), S(0), t(1));
FA2: full_adder PORT MAP (t(1), a(1), b(1), S(1), t(2));

FA3: full_adder PORT MAP (t(2), a(2), b(2), S(2), t(3));

FA4: full_adder PORT MAP (t(3), a(3), b(3), S(3), Cout);

END;

• std_vectors make it easier to replicate structures• std_vectors make it easier to replicate structures

CWRU EECS 318

For-Generate statement: first improvement

ARCHITECTURE ripple_4_arch OF adder_bits_4 IS

COMPONENT full_adder
PORT (x, y, z: IN std_logic; Sum, Carry: OUT std_logic);

END COMPONENT;

SIGNAL t: std_logic_vector(3 downto 1);
CONSTANT n: INTEGER := 4;

BEGIN

FA1: full_adder PORT MAP (Cin, a(0), b(0), S(0), t(1));
FA2: full_adder PORT MAP (t(1), a(1), b(1), S(1), t(2));

FA3: full_adder PORT MAP (t(2), a(2), b(2), S(2), t(3));

FA4: full_adder PORT MAP (t(n), a(n), b(n), S(n), Cout);

END;

Constants never change valueConstants never change value

FA_f: for i in 1 to n-2 generate
FA_i: full_adder PORT MAP (t(i), a(i), b(i), S(i), t(i+1));

end generate;

LABEL: before the for is not optionalLABEL: before the for is not optional

CWRU EECS 318

For-Generate statement: second improvement

ARCHITECTURE ripple_4_arch OF adder_bits_4 IS

COMPONENT full_adder
PORT (x, y, z: IN std_logic; Sum, Carry: OUT std_logic);

END COMPONENT;

SIGNAL t: std_logic_vector(4 downto 0);
CONSTANT n: INTEGER := 4;

BEGIN

t(0) <= Cin; Cout <= t(n);

FA_f: for i in 0 to n-1 generate
FA_i: full_adder PORT MAP (t(i), a(i), b(i), S(i), t(i+1));

end generate;

END;

Keep track of vector sizesKeep track of vector sizes

CWRU EECS 318

N-bit adder using generic

• By using generics, the design can be generalized

ENTITY adder_bits_4 IS

 PORT (Cin: IN std_logic;
 a, b: IN std_logic_vector(3 downto 0);
 S: OUT std_logic_vector(3 downto 0);
 Cout: OUT std_logic

); END;

ENTITY adder_bits_4 IS

 PORT (Cin: IN std_logic;
 a, b: IN std_logic_vector(3 downto 0);
 S: OUT std_logic_vector(3 downto 0);
 Cout: OUT std_logic

); END;

ENTITY adder_bits_n IS

 PORT (Cin: IN std_logic;
 a, b: IN std_logic_vector(n-1 downto 0);
 S: OUT std_logic_vector(n-1 downto 0);
 Cout: OUT std_logic

); END;

ENTITY adder_bits_n IS

 PORT (Cin: IN std_logic;
 a, b: IN std_logic_vector(n-1 downto 0);
 S: OUT std_logic_vector(n-1 downto 0);
 Cout: OUT std_logic

); END;

 GENERIC(n: INTEGER := 2);

Default case is 2Default case is 2

 a, b: IN std_logic_vector(n-1 downto 0);
 S: OUT std_logic_vector(n-1 downto 0);

CWRU EECS 318

For-Generate statement: third improvement

ARCHITECTURE ripple_n_arch OF adder_bits_n IS

 COMPONENT full_adder
PORT (x, y, z: IN std_logic; Sum, Carry: OUT std_logic);

 END COMPONENT;

 SIGNAL t: std_logic_vector(n downto 0);
BEGIN

 t(0) <= Cin; Cout <= t(n);

 FA: for i in 0 to n-1 generate
FA_i: full_adder PORT MAP (t(i), a(i), b(i), S(i), t(i+1));

 end generate;

END;

CWRU EECS 318

Stimulus Only Test Bench Architecture

ARCHITECTURE tb OF tb_adder_4 IS
 COMPONENT adder_bits_n

GENERIC(n: INTEGER := 2);
PORT (Cin: IN std_logic;
 a, b: IN std_logic_vector(n-1 downto 0);
 S: OUT std_logic_vector(n-1 downto 0);
 Cout: OUT std_logic

 END COMPONENT;

 SIGNAL x, y, Sum: std_logic_vector(n downto 0);
 SIGNAL c, Cout: std_logic;
BEGIN
 x <= “0000”, “0001” after 50 ns, “0101”, after 100 ns;
 y <= “0010”, “0011” after 50 ns, “1010”, after 100 ns;
 c <= ‘1’, ‘0’ after 50 ns;
 UUT_ADDER_4: adder_bits_n GENERIC MAP(4)

PORT MAP (c, x, y, Sum, Cout);
END;

Override
default

Override
default

CWRU EECS 318

Stimulus Only Test Bench Entity

ENTITY tb_adder_4 IS

PORT (Sum: std_logic_vector(3 downto 0);

Cout: std_logic
); END;

The output of the testbench will be observe by the digital

waveform of the simulator.

