EECS 318 CAD Computer Aided Design

LECTURE Simulator 2: Textio, Wait, Clocks, and

Sopwith Camel

ALT 12 Instructor Francis G. Wolff wolff @eecs.cwru.edu Case Western Reserve University werpoint animation: please viewshow

adder_full_tb_io.vhd: full adder test bench

ENTITY adder_full_tb_io IS END; This test bench contains no outputs

adder_full_tb_io.vhd: architecture begin

COMPONENT adder_full PORT (x,y,Cin: IN std_logic; Sum,Cout: OUT std_logic); END COMPONENT;

SIGNAL x, y, Cin, Sum, Cout: std_logic; BEGIN

UUT_ADDER: adder_full PORT MAP(x, y, Cin, Sum, Cout);

adder_full_tb_io.vhd: test case #1

adder_full_tb_io.vhd: test case #2

```
-- Test Case #2
x<= '1'; y<= '1'; Cin<= '0';
WAIT FOR 5 ns;
WRITE(S,STRING'(" X="));
WRITE(S,STRING'(" Y="));
WRITE(S,STRING'(" Cin="));
WRITE(S,STRING'(" Sum="));
WRITE(S,STRING'(" Cout="));
WRITELINE(OUTPUT, S);
```

```
WRITE(S, x);
WRITE(S, y);
WRITE(S, Cin);
WRITE(S, Sum);
WRITE(S, Cout);
```

adder_full_tb_io.vhd: configuration

VHDL Simulator: running the test bench

Unix> vhdlan -NOEVENT adder_full.vhd Unix> vhdlan -NOEVENT adder_full_tb_io.vhd Unix> vhdlsim WORK.adder_full_tb_io_cfg

Is ADDER_FULL_TB_IO STANDARD ATTRIBUTES STD_LOGIC_1164 _KERNEL

run

```
X=0 Y=1 Cin=0 Sum=1 Cout=0
```

```
X=1 Y=1 Cin=0 Sum=0 Cout=1
```

10 NS

Assertion ERROR at 10 NS in design unit ADDER_FULL_TB_IO(ADDER_FULL_TB_IO_ARCH) from process /ADDER_FULL_TB_IO/_P0:

"Simulation Done"

quit

VHDL clock behavioral component

```
ENTITY clock_driver IS
```

```
GENERIC (Speed: TIME := 5 ns);
```

```
PORT (Clk: OUT std_logic);
```

END;

ARCHITECTURE clock_driver_arch OF clock_driver IS

SIGNAL Clock: std_logic := '0';

BEGIN

```
Clk <= Clk XOR '1' after Speed;
```

```
Clock <= Clk;
```

END ARCHITECTURE;

CONFIGURATION clock_driver_cfg OF clock_driver IS FOR clock_driver_arch END FOR; END CONFIGURATION;

Team Assignment #5 Test benches (1/2)

- Display all input and output bits
- Three tests with correct results for each test bench
- Cut and Paste the output to a file and print it

System Level: Team member #1 is responsible for

T101_ALU_BIT_TB.vhd and T101_ALU_TB.vhd

Processor: Team member #2 is responsible for

• T101_FSM_TB.vhd: test bench for add instruction

Memory: Team member #3 is responsible for

- T101_RAM_TB.vhd write and read some words
- T101_ROM_TB.vhd with machine instructions

Team Assignment #5 Test Bench

The report should contain the following

- Cover sheet
- Each entity section should have the vhdl, and simulation
- The VHDL test benches for the complete design

Everything is due Thursday October 26!

(2/2)

Team Assignment #6 System Test Bench

- Cover sheet
- Each entity section should have the
 - vhdl, simulation, and synthesis
- The vhdl T101_PU_TB.vhd test benches
 - Simulate the 32 bit add program: output = input + 1
 - Read first byte value from the input port and zero upper 24 bits via lbi's
 - Load the second value from immediate loads
 - Store the results in the output port
 - Display the output port in the test bench
- Combined report of Assignments #3, #4, #5
 - Everything is due Thursday October 26!