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Introduction

This chapter introduces the ARM7TDMI architecture, and shows block, core, and
functional diagrams for the ARM7TDMI.

1.1 Introduction 1-2

1.2 ARM7TDMI Architecture 1-2

1.3 ARM7TDMI Block Diagram 1-4

1.4 ARM7TDMI Core Diagram 1-5

1.5 ARM7TDMI Functional Diagram 1-6

1
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1.1 Introduction
The ARM7TDMI is a member of the Advanced RISC Machines (ARM) family of
general purpose 32-bit microprocessors, which offer high performance for very low
power consumption and price.

The ARM architecture is based on Reduced Instruction Set Computer (RISC)
principles, and the instruction set and related decode mechanism are much simpler
than those of microprogrammed Complex Instruction Set Computers. This simplicity
results in a high instruction throughput and impressive real-time interrupt response
from a small and cost-effective chip.

Pipelining is employed so that all parts of the processing and memory systems can
operate continuously. Typically, while one instruction is being executed, its successor
is being decoded, and a third instruction is being fetched from memory.

The ARM memory interface has been designed to allow the performance potential to
be realised without incurring high costs in the memory system. Speed-critical control
signals are pipelined to allow system control functions to be implemented in standard
low-power logic, and these control signals facilitate the exploitation of the fast local
access modes offered by industry standard dynamic RAMs.

1.2 ARM7TDMI Architecture
The ARM7TDMI processor employs a unique architectural strategy known as THUMB,
which makes it ideally suited to high-volume applications with memory restrictions, or
applications where code density is an issue.

1.2.1 The THUMB Concept

The key idea behind THUMB is that of a super-reduced instruction set. Essentially, the
ARM7TDMI processor has two instruction sets:

• the standard 32-bit ARM set
• a 16-bit THUMB set

The THUMB set’s 16-bit instruction length allows it to approach twice the density of
standard ARM code while retaining most of the ARM’s performance advantage over a
traditional 16-bit processor using 16-bit registers. This is possible because THUMB
code operates on the same 32-bit register set as ARM code.

THUMB code is able to provide up to 65% of the code size of ARM, and 160% of the
performance of an equivalent ARM processor connected to a 16-bit memory system.



Introduction

ARM7TDMI Data Sheet
ARM DDI 0029E

1-3

O
pe

n 
A

cc
es

s

1.2.2 THUMB’s Advantages

THUMB instructions operate with the standard ARM register configuration, allowing
excellent interoperability between ARM and THUMB states. Each 16-bit THUMB
instruction has a corresponding 32-bit ARM instruction with the same effect on the
processor model.

The major advantage of a 32-bit (ARM) architecture over a 16-bit architecture is its
ability to manipulate 32-bit integers with single instructions, and to address a large
address space efficiently. When processing 32-bit data, a 16-bit architecture will take
at least two instructions to perform the same task as a single ARM instruction.

However, not all the code in a program will process 32-bit data (for example, code that
performs character string handling), and some instructions, like Branches, do not
process any data at all.

If a 16-bit architecture only has 16-bit instructions, and a 32-bit architecture only has
32-bit instructions, then overall the 16-bit architecture will have better code density,
and better than one half the performance of the 32-bit architecture. Clearly 32-bit
performance comes at the cost of code density.

THUMB breaks this constraint by implementing a 16-bit instruction length on a 32-bit
architecture, making the processing of 32-bit data efficient with a compact instruction
coding. This provides far better performance than a 16-bit architecture, with better
code density than a 32-bit architecture.

THUMB also has a major advantage over other 32-bit architectures with 16-bit
instructions. This is the ability to switch back to full ARM code and execute at full
speed. Thus critical loops for applications such as

• fast interrupts
• DSP algorithms

can be coded using the full ARM instruction set, and linked with THUMB code. The
overhead of switching from THUMB code to ARM code is folded into sub-routine entry
time. Various portions of a system can be optimised for speed or for code density by
switching between THUMB and ARM execution as appropriate.
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1.3 ARM7TDMI Block Diagram

 Figure 1-1: ARM7TDMI block diagram
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1.4 ARM7TDMI Core Diagram

 Figure 1-2: ARM7TDMI core
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1.5 ARM7TDMI Functional Diagram

 Figure 1-3: ARM7TDMI functional diagram
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Signal Description

This chapter lists and describes the signals for the ARM7TDMI.

2.1 Signal Description 2-2

2
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2.1 Signal Description
The following table lists and describes all the signals for the ARM7TDMI.

Transistor sizes

For a 0.6 µm ARM7TDMI:

INV4 driver has transistor sizes of p = 22.32 µm/0.6 µm
N = 12.6 µm/0.6 µm

INV8 driver has transistor sizes of p = 44.64 µm/0.6 µm
N = 25.2 µm/0.6 µm

Key to signal types

IC Input CMOS thresholds
P Power
O4 Output with INV4 driver
O8 Output with INV8 driver

Name Type Description

A[31:0]
Addresses

08 This is the processor address bus. If ALE  (address latch enable)
is HIGH and APE (Address Pipeline Enable) is LOW, the
addresses become valid during phase 2 of the cycle before the
one to which they refer and remain so during phase 1 of the
referenced cycle. Their stable period may be controlled by ALE
or APE as described below.

ABE
Address bus enable

IC This is an input signal which, when LOW, puts the address bus
drivers into a high impedance state. This signal has a similar
effect on the following control signals: MAS[1:0] , nRW, LOCK ,
nOPC and nTRANS . ABE  must be tied HIGH when there is no
system requirement to turn off the address drivers.

ABORT
Memory Abort

IC This is an input which allows the memory system to tell the
processor that a requested access is not allowed.

ALE
Address latch enable.

IC This input is used to control transparent latches on the address
outputs. Normally the addresses change during phase 2 to the
value required during the next cycle, but for direct interfacing to
ROMs they are required to be stable to the end of phase 2.
Taking ALE LOW until the end of phase 2 will ensure that this
happens. This signal has a similar effect on the following control
signals: MAS[1:0] , nRW, LOCK , nOPC and nTRANS . If the
system does not require address lines to be held in this way,
ALE must be tied HIGH. The address latch is static, so ALE  may
be held LOW for long periods to freeze addresses.

 Table 2-1: Signal Description
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APE
Address pipeline enable.

IC When HIGH, this signal enables the address timing pipeline. In
this state, the address bus plus MAS[1:0] , nRW, nTRANS ,
LOCK  and nOPC change in the phase 2 prior to the memory
cycle to which they refer. When APE is LOW, these signals
change in the phase 1 of the actual cycle. Please refer to ➲
Chapter 6, Memory Interface for details of this timing.

BIGEND
Big Endian configuration.

IC When this signal is HIGH the processor treats bytes in memory
as being in Big Endian format. When it is LOW, memory is
treated as Little Endian.

BL[3:0]
Byte Latch Control.

IC These signals control when data and instructions are latched
from the external data bus. When BL[3]  is HIGH, the data on
D[31:24]  is latched on the falling edge of MCLK . When BL[2 ] is
HIGH, the data on D[23:16]  is latched and so on.   Please refer
to ➲ Chapter 6, Memory Interface for details on the use of
these signals.

BREAKPT
Breakpoint.

IC This signal allows external hardware to halt the execution of the
processor for debug purposes. When HIGH causes the current
memory access to be breakpointed. If the memory access is an
instruction fetch, ARM7TDMI will enter debug state if the
instruction reaches the execute stage of the ARM7TDMI pipeline.
If the memory access is for data, ARM7TDMI will enter debug
state after the current instruction completes execution.This
allows extension of the internal breakpoints provided by the
ICEBreaker module. See ➲ Chapter 9, ICEBreaker Module.

BUSDIS
Bus Disable

O This signal is HIGH when INTEST is selected on scan chain 0 or
4 and may be used to disable external logic driving onto the
bidirectional data bus during scan testing. This signal changes on
the falling edge of TCK.

BUSEN
Data bus configuration

IC This is a static configuration signal which determines whether the
bidirectional data bus, D[31:0] , or the unidirectional data busses,
DIN[31:0]  and DOUT[31:0] , are to be used for transfer of data
between the processor and memory. Refer also to ➲ Chapter 6,
Memory Interface.
When BUSEN is LOW, the bidirectional data bus, D[31:0]  is
used. In this case, DOUT[31:0]  is driven to value 0x00000000,
and any data presented on DIN[31:0]  is ignored.
When BUSEN is HIGH, the bidirectional data bus, D[31:0]  is
ignored and must be left unconnected. Input data and
instructions are presented on the input data bus, DIN[31:0] ,
output data appears on DOUT[31:0] .

COMMRX
Communications Channel
Receive

O When HIGH, this signal denotes that the comms channel receive
buffer is empty. This signal changes on the rising edge of MCLK .
See ➲9.11 Debug Communications Channel on page 9-14
for more information on the debug comms channel.

Name Type Description

 Table 2-1: Signal Description (Continued)
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COMMTX
Communications Channel
Transmit

O When HIGH, this signal denotes that the comms channel
transmit buffer is empty. This signal changes on the rising edge
of MCLK . See ➲9.11 Debug Communications Channel on
page 9-14 for more information on the debug comms channel.

CPA
Coprocessor absent.

IC A coprocessor which is capable of performing the operation that
ARM7TDMI is requesting (by asserting nCPI) should take CPA
LOW immediately. If CPA is HIGH at the end of phase 1 of the
cycle in which nCPI went LOW, ARM7TDMI will abort the
coprocessor handshake and take the undefined instruction trap.
If CPA is LOW and remains LOW, ARM7TDMI will busy-wait until
CPB is LOW and then complete the coprocessor instruction.

CPB
Coprocessor busy.

IC A coprocessor which is capable of performing the operation
which ARM7TDMI is requesting (by asserting nCPI), but cannot
commit to starting it immediately, should indicate this by driving
CPB HIGH. When the coprocessor is ready to start it should take
CPB LOW. ARM7TDMI samples CPB at the end of phase 1 of
each cycle in which nCPI is LOW.

D[31:0]
Data Bus.

IC
08

These are bidirectional signal paths which are used for data
transfers between the processor and external memory. During
read cycles (when nRW is LOW), the input data must be valid
before the end of phase 2 of the transfer cycle. During write
cycles (when nRW is HIGH), the output data will become valid
during phase 1 and remain valid throughout phase 2 of the
transfer cycle.
Note that this bus is driven at all times, irrespective of whether
BUSEN is HIGH or LOW. When D[31:0]  is not being used to
connect to the memory system it must be left unconnected. See
➲ Chapter 6, Memory Interface.

DBE
Data Bus Enable.

IC This is an input signal which, when driven LOW, puts the data
bus D[31:0]  into the high impedance state. This is included for
test purposes, and should be tied HIGH at all times.

DBGACK
Debug acknowledge.

04 When HIGH indicates ARM is in debug state.

DBGEN
Debug Enable.

IC This input signal allows the debug features of ARM7TDMI to be
disabled. This signal should be driven LOW when debugging is
not required.

DBGRQ
Debug request.

IC This is a level-sensitive input, which when HIGH causes
ARM7TDMI to enter debug state after executing the current
instruction. This allows external hardware to force ARM7TDMI
into the debug state, in addition to the debugging features
provided by the ICEBreaker block. See ➲ Chapter 9,
ICEBreaker Module for details.

Name Type Description

 Table 2-1: Signal Description (Continued)
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DBGRQI
Internal debug request

04 This signal represents the debug request signal which is
presented to the processor. This is the combination of external
DBGRQ, as presented to the ARM7TDMI macrocell, and bit 1 of
the debug control register. Thus there are two conditions where
this signal can change. Firstly, when DBGRQ changes, DBGRQI
will change after a propagation delay. When bit 1 of the debug
control register has been written, this signal will change on the
falling edge of TCK when the TAP controller state machine is in
the RUN-TEST/IDLE state. See ➲ Chapter 9, ICEBreaker
Module for details.

DIN[31:0]
Data input bus

IC This is the input data bus which may be used to transfer
instructions and data between the processor and memory.This
data input bus is only used when BUSEN is HIGH. The data on
this bus is sampled by the processor at the end of phase 2 during
read cycles (i.e. when nRW is LOW).

DOUT[31:0]
Data output bus

08 This is the data out bus, used to transfer data from the processor
to the memory system. Output data only appears on this bus
when BUSEN is HIGH. At all other times, this bus is driven to
value 0x00000000. When in use, data on this bus changes
during phase 1 of store cycles (i.e. when nRW is HIGH) and
remains valid throughout phase 2.

DRIVEBS
Boundary scan
cell enable

04 This signal is used to control the multiplexers in the scan cells of
an external boundary scan chain. This signal changes in the
UPDATE-IR state when scan chain 3 is selected and either the
INTEST, EXTEST, CLAMP or CLAMPZ instruction is loaded.
When an external boundary scan chain is not connected, this
output should be left unconnected.

ECAPCLK
Extest capture clock

O This signal removes the need for the external logic in the test
chip which was required to enable the internal tristate bus during
scan testing. This need not be brought out as an external pin on
the test chip.

ECAPCLKBS
Extest capture clock for
Boundary Scan

04 This is a TCK2 wide pulse generated when the TAP controller
state machine is in the CAPTURE-DR state, the current
instruction is EXTEST and scan chain 3 is selected. This is used
to capture the macrocell outputs during EXTEST. When an
external boundary scan chain is not connected, this output
should be left unconnected.

ECLK
External clock output.

04 In normal operation, this is simply MCLK  (optionally stretched
with nWAIT ) exported from the core. When the core is being
debugged, this is DCLK . This allows external hardware to track
when the ARM7DM core is clocked.

EXTERN0
External input 0.

IC This is an input to the ICEBreaker logic in the ARM7TDMI which
allows breakpoints and/or watchpoints to be dependent on an
external condition.

Name Type Description

 Table 2-1: Signal Description (Continued)
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EXTERN1
External input 1.

IC This is an input to the ICEBreaker logic in the ARM7TDMI which
allows breakpoints and/or watchpoints to be dependent on an
external condition.

HIGHZ 04 This signal denotes that the HIGHZ instruction has been loaded
into the TAP controller. See ➲ Chapter 8, Debug Interface for
details.

ICAPCLKBS
Intest capture clock

04 This is a TCK2 wide pulse generated when the TAP controller
state machine is in the CAPTURE-DR state, the current
instruction is INTEST and scan chain 3 is selected. This is used
to capture the macrocell outputs during INTEST. When an
external boundary scan chain is not connected, this output
should be left unconnected.

IR[3:0]
TAP controller Instruction
register

04 These 4 bits reflect the current instruction loaded into the TAP
controller instruction register. The instruction encoding is as
described in ➲8.8 Public Instructions on page 8-9. These bits
change on the falling edge of TCK when the state machine is in
the UPDATE-IR state.

ISYNC
Synchronous interrupts.

IC When LOW indicates that the nIRQ and nFIQ inputs are to be
synchronised by the ARM core. When HIGH disables this
synchronisation for inputs that are already synchronous.

LOCK
Locked operation.

08 When LOCK is HIGH, the processor is performing a “locked”
memory access, and the memory controller must wait until LOCK
goes LOW before allowing another device to access the memory.
LOCK  changes while MCLK  is HIGH, and remains HIGH for the
duration of the locked memory accesses. It is active only during
the data swap (SWP) instruction. The timing of this signal may be
modified by the use of ALE  and APE in a similar way to the
address, please refer to the ALE  and APE descriptions. This
signal may also be driven to a high impedance state by driving
ABE  LOW.

MAS[1:0]
Memory Access Size.

08 These are output signals used by the processor to indicate to the
external memory system when a word transfer or a half-word or
byte length is required. The signals take the value 10 (binary) for
words, 01 for half-words and 00 for bytes. 11 is reserved. These
values are valid for both read and write cycles. The signals will
normally become valid during phase 2 of the cycle before the one
in which the transfer will take place. They will remain stable
throughout phase 1 of the transfer cycle. The timing of the
signals may be modified by the use of ALE  and APE in a similar
way to the address, please refer to the ALE  and APE
descriptions. The signals may also be driven to high impedance
state by driving ABE  LOW.

Name Type Description

 Table 2-1: Signal Description (Continued)
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MCLK
Memory clock input.

IC This clock times all ARM7TDMI memory accesses and internal
operations. The clock has two distinct phases - phase 1 in which
MCLK  is LOW and phase 2 in which MCLK  (and nWAIT ) is
HIGH. The clock may be stretched indefinitely in either phase to
allow access to slow peripherals or memory. Alternatively, the
nWAIT  input may be used with a free running MCLK  to achieve
the same effect.

nCPI
Not Coprocessor
instruction.

04 When ARM7TDMI executes a coprocessor instruction, it will take
this output LOW and wait for a response from the coprocessor.
The action taken will depend on this response, which the
coprocessor signals on the CPA and CPB inputs.

nENIN
NOT enable input.

IC This signal may be used in conjunction with nENOUT to control
the data bus during write cycles. See ➲ Chapter 6, Memory
Interface.

nENOUT
Not enable output.

04 During a data write cycle, this signal is driven LOW during phase
1, and remains LOW for the entire cycle. This may be used to aid
arbitration in shared bus applications. See ➲ Chapter 6,
Memory Interface.

nENOUTI
Not enable output.

O During a coprocessor register transfer C-cycle from the
ICEbreaker comms channel coprocessor to the ARM core, this
signal goes LOW during phase 1 and stays LOW for the entire
cycle. This may be used to aid arbitration in shared bus systems.

nEXEC
Not executed.

04 When HIGH indicates that the instruction in the execution unit is
not being executed, because for example it has failed its
condition code check.

nFIQ
Not fast interrupt request.

IC This is an interrupt request to the processor which causes it to be
interrupted if taken LOW when the appropriate enable in the
processor is active. The signal is level-sensitive and must be
held LOW until a suitable response is received from the
processor. nFIQ may be synchronous or asynchronous,
depending on the state of ISYNC.

nHIGHZ
Not HIGHZ

04 This signal is generated by the TAP controller when the current
instruction is HIGHZ. This is used to place the scan cells of that
scan chain in the high impedance state. When a external
boundary scan chain is not connected, this output should be left
unconnected.

nIRQ
Not interrupt request.

IC As nFIQ, but with lower priority. May be taken LOW to interrupt
the processor when the appropriate enable is active. nIRQ may
be synchronous or asynchronous, depending on the state of
ISYNC.

nM[4:0]
Not processor mode.

04 These are output signals which are the inverses of the internal
status bits indicating the processor operation mode.

Name Type Description

 Table 2-1: Signal Description (Continued)
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nMREQ
Not memory request.

04 This signal, when LOW, indicates that the processor requires
memory access during the following cycle. The signal becomes
valid during phase 1, remaining valid through phase 2 of the
cycle preceding that to which it refers.

nOPC
Not op-code fetch.

08 When LOW this signal indicates that the processor is fetching an
instruction from memory; when HIGH, data (if present) is being
transferred. The signal becomes valid during phase 2 of the
previous cycle, remaining valid through phase 1 of the
referenced cycle. The timing of this signal may be modified by
the use of ALE  and APE in a similar way to the address, please
refer to the ALE  and APE descriptions. This signal may also be
driven to a high impedance state by driving ABE  LOW.

nRESET
Not reset.

IC This is a level sensitive input signal which is used to start the
processor from a known address. A LOW level will cause the
instruction being executed to terminate abnormally. When
nRESET becomes HIGH for at least one clock cycle, the
processor will re-start from address 0. nRESET must remain
LOW (and nWAIT  must remain HIGH) for at least two clock
cycles. During the LOW period the processor will perform dummy
instruction fetches with the address incrementing from the point
where reset was activated. The address will overflow to zero if
nRESET is held beyond the maximum address limit.

nRW
Not read/write.

08 When HIGH this signal indicates a processor write cycle; when
LOW, a read cycle. It becomes valid during phase 2 of the cycle
before that to which it refers, and remains valid to the end of
phase 1 of the referenced cycle. The timing of this signal may be
modified by the use of ALE  and APE in a similar way to the
address, please refer to the ALE  and APE descriptions. This
signal may also be driven to a high impedance state by driving
ABE  LOW.

nTDOEN
Not TDO Enable.

04 When LOW, this signal denotes that serial data is being driven
out on the TDO output. nTDOEN would normally be used as an
output enable for a TDO pin in a packaged part.

nTRANS
Not memory translate.

08 When this signal is LOW it indicates that the processor is in user
mode. It may be used to tell memory management hardware
when translation of the addresses should be turned on, or as an
indicator of non-user mode activity. The timing of this signal may
be modified by the use of ALE  and APE in a similar way to the
address, please refer to the ALE  and APE description. This
signal may also be driven to a high impedance state by driving
ABE  LOW.

nTRST
Not Test Reset.

IC Active-low reset signal for the boundary scan logic. This pin must
be pulsed or driven LOW to achieve normal device operation, in
addition to the normal device reset (nRESET). For more
information, see ➲ Chapter 8, Debug Interface.

Name Type Description

 Table 2-1: Signal Description (Continued)
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nWAIT
Not wait.

IC When accessing slow peripherals, ARM7TDMI can be made to
wait for an integer number of MCLK  cycles by driving nWAIT
LOW. Internally, nWAIT  is ANDed with MCLK and must only
change when MCLK  is LOW. If nWAIT  is not used it must be tied
HIGH.

PCLKBS
Boundary scan
update clock

04 This is a TCK2 wide pulse generated when the TAP controller
state machine is in the UPDATE-DR state and scan chain 3 is
selected. This is used by an external boundary scan chain as the
update clock. When an external boundary scan chain is not
connected, this output should be left unconnected.

RANGEOUT0
ICEbreaker Rangeout0

04 This signal indicates that ICEbreaker watchpoint register 0 has
matched the conditions currently present on the address, data
and control busses. This signal is independent of the state of the
watchpoint’s enable control bit. RANGEOUT0 changes when
ECLK  is LOW.

RANGEOUT1
ICEbreaker Rangeout1

04 As RANGEOUT0 but corresponds to ICEbreaker’s watchpoint
register 1.

RSTCLKBS
Boundary Scan
Reset Clock

O This signal denotes that either the TAP controller state machine
is in the RESET state or that nTRST has been asserted. This
may be used to reset external boundary scan cells.

SCREG[3:0]
Scan Chain Register

O These 4 bits reflect the ID number of the scan chain currently
selected by the TAP controller. These bits change on the falling
edge of TCK when the TAP state machine is in the UPDATE-DR
state.

SDINBS
Boundary Scan
Serial Input Data

O This signal contains the serial data to be applied to an external
scan chain and is valid around the falling edge of TCK.

SDOUTBS
Boundary scan serial
output data

IC This control signal is provided to ease the connection of an
external boundary scan chain. This is the serial data out of the
boundary scan chain. It should be set up to the rising edge of
TCK. When an external boundary scan chain is not connected,
this input should be tied LOW.

SEQ
Sequential address.

O4 This output signal will become HIGH when the address of the
next memory cycle will be related to that of the last memory
access. The new address will either be the same as the previous
one or 4 greater in ARM state, or 2 greater in THUMB state.

The signal becomes valid during phase 1 and remains so
through phase 2 of the cycle before the cycle whose address it
anticipates. It may be used, in combination with the low-order
address lines, to indicate that the next cycle can use a fast
memory mode (for example DRAM page mode) and/or to bypass
the address translation system.

Name Type Description

 Table 2-1: Signal Description (Continued)
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SHCLKBS
Boundary scan shift clock,
phase 1

04 This control signal is provided to ease the connection of an
external boundary scan chain. SHCLKBS  is used to clock the
master half of the external scan cells. When in the SHIFT-DR
state of the state machine and scan chain 3 is selected,
SHCLKBS  follows TCK1. When not in the SHIFT-DR state or
when scan chain 3 is not selected, this clock is LOW. When an
external boundary scan chain is not connected, this output
should be left unconnected.

SHCLK2BS
Boundary scan shift clock,
phase 2

04 This control signal is provided to ease the connection of an
external boundary scan chain. SHCLK2BS  is used to clock the
master half of the external scan cells. When in the SHIFT-DR
state of the state machine and scan chain 3 is selected,
SHCLK2BS  follows TCK2. When not in the SHIFT-DR state or
when scan chain 3 is not selected, this clock is LOW. When an
external boundary scan chain is not connected, this output
should be left unconnected.

TAPSM[3:0]
TAP controller
state machine

04 This bus reflects the current state of the TAP controller state
machine, as shown in ➲8.4.2 The JTAG state machine on
page 8-8. These bits change off the rising edge of TCK.

TBE
Test Bus Enable.

IC When driven LOW, TBE forces the data bus D[31:0] , the
Address bus A[31:0] , plus LOCK , MAS[1:0] , nRW, nTRANS
and nOPC to high impedance. This is as if both ABE  and DBE
had both been driven LOW. However, TBE does not have an
associated scan cell and so allows external signals to be driven
high impedance during scan testing. Under normal operating
conditions, TBE should be held HIGH at all times.

TBIT O4 When HIGH, this signal denotes that the processor is executing
the THUMB instruction set. When LOW, the processor is
executing the ARM instruction set.   This signal changes in phase
2 in the first execute cycle of a BX instruction.

TCK IC Test Clock.

TCK1
TCK, phase 1

04 This clock represents phase 1 of TCK. TCK1 is HIGH when TCK
is HIGH, although there is a slight phase lag due to the internal
clock non-overlap.

TCK2
TCK, phase 2

04 This clock represents phase 2 of TCK. TCK2 is HIGH when TCK
is LOW, although there is a slight phase lag due to the internal
clock non-overlap.TCK2 is the non-overlapping compliment of
TCK1.

TDI IC Test Data Input.

TDO
Test Data Output.

O4 Output from the boundary scan logic.

TMS IC Test Mode Select.

Name Type Description

 Table 2-1: Signal Description (Continued)
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VDD
Power supply.

P These connections provide power to the device.

VSS
Ground.

P These connections are the ground reference for all signals.

Name Type Description

 Table 2-1: Signal Description (Continued)
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Programmer’s Model

This chapter describes the two operating states of the ARM7TDMI.

3.1 Processor Operating States 3-2

3.2 Switching State 3-2

3.3 Memory Formats 3-2

3.4 Instruction Length 3-3

3.5 Data Types 3-3

3.6 Operating Modes 3-4

3.7 Registers 3-4

3.8 The Program Status Registers 3-8

3.9 Exceptions 3-10

3.11 Reset 3-15
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3.1 Processor Operating States
From the programmer’s point of view, the ARM7TDMI can be in one of two states:

ARM state which executes 32-bit, word-aligned ARM instructions.

THUMB state which operates with 16-bit, halfword-aligned THUMB
instructions. In this state, the PC uses bit 1 to select between
alternate halfwords.

Note Transition between these two states does not affect the processor mode or the
contents of the registers.

3.2 Switching State

Entering THUMB state

Entry into THUMB state can be achieved by executing a BX instruction with the state
bit (bit 0) set in the operand register.

Transition to THUMB state will also occur automatically on return from an exception
(IRQ, FIQ, UNDEF, ABORT, SWI etc.), if the exception was entered with the processor
in THUMB state.

Entering ARM state

Entry into ARM state happens:

1 On execution of the BX instruction with the state bit clear in the operand
register.

2 On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT,
SWI etc.).

In this case, the PC is placed in the exception mode’s link register, and
execution commences at the exception’s vector address.

3.3 Memory Formats
ARM7TDMI views memory as a linear collection of bytes numbered upwards from
zero. Bytes 0 to 3 hold the first stored word, bytes 4 to 7 the second and so on.
ARM7TDMI can treat words in memory as being stored either in Big Endian or Little
Endian format.
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3.3.1 Big endian format

In Big Endian format, the most significant byte of a word is stored at the lowest
numbered byte and the least significant byte at the highest numbered byte. Byte 0 of
the memory system is therefore connected to data lines 31 through 24.

3.3.2 Little endian format

In Little Endian format, the lowest numbered byte in a word is considered the word’s
least significant byte, and the highest numbered byte the most significant. Byte 0 of
the memory system is therefore connected to data lines 7 through 0.

3.4 Instruction Length
Instructions are either 32 bits long (in ARM state) or 16 bits long (in THUMB state).

3.5 Data Types
ARM7TDMI supports byte (8-bit), halfword (16-bit) and word (32-bit) data types.
Words must be aligned to four-byte boundaries and half words to two-byte boundaries.

Higher Address 31              24 23               16 15               8 7                0 Word Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower Address • Most significant byte is at lowest address
• Word is addressed by byte address of most significant byte

 Figure 3-1: Big endian addresses of bytes within words

Higher Address 31              24 23               16 15               8 7                0 Word Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower Address • Least significant byte is at lowest address
• Word is addressed by byte address of least significant byte

 Figure 3-2: Little endian addresses of bytes within words
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3.6 Operating Modes
ARM7TDMI supports seven modes of operation:

User (usr): The normal ARM program execution state

FIQ (fiq): Designed to support a data transfer or channel process

IRQ (irq): Used for general-purpose interrupt handling

Supervisor (svc): Protected mode for the operating system

Abort mode (abt): Entered after a data or instruction prefetch abort

System (sys): A privileged user mode for the operating system

Undefined (und): Entered when an undefined instruction is executed

Mode changes may be made under software control, or may be brought about by
external interrupts or exception processing. Most application programs will execute in
User mode. The non-user modes - known as privileged modes - are entered in order
to service interrupts or exceptions, or to access protected resources.

3.7 Registers
ARM7TDMI has a total of 37 registers - 31 general-purpose 32-bit registers and six
status registers - but these cannot all be seen at once. The processor state and
operating mode dictate which registers are available to the programmer.

3.7.1 The ARM state register set

In ARM state, 16 general registers and one or two status registers are visible at any
one time. In privileged (non-User) modes, mode-specific banked registers are
switched in. ➲Figure 3-3: Register organization in ARM state shows which registers
are available in each mode: the banked registers are marked with a shaded triangle.

The ARM state register set contains 16 directly accessible registers: R0 to R15. All of
these except R15 are general-purpose, and may be used to hold either data or
address values. In addition to these, there is a seventeenth register used to store
status information

Register 14 is used as the subroutine link register. This receives a copy of
R15 when a Branch and Link (BL) instruction is executed. At
all other times it may be treated as a general-purpose
register. The corresponding banked registers R14_svc,
R14_irq, R14_fiq, R14_abt and R14_und are similarly used
to hold the return values of R15 when interrupts and
exceptions arise, or when Branch and Link instructions are
executed within interrupt or exception routines.

Register 15 holds the Program Counter (PC). In ARM state, bits [1:0] of
R15 are zero and bits [31:2] contain the PC. In THUMB state,
bit [0] is zero and bits [31:1] contain the PC.

Register 16 is the CPSR (Current Program Status Register). This
contains condition code flags and the current mode bits.
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FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). In ARM
state, many FIQ handlers do not need to save any registers. User, IRQ, Supervisor,
Abort and Undefined each have two banked registers mapped to R13 and R14,
allowing each of these modes to have a private stack pointer and link registers.

 Figure 3-3: Register organization in ARM state

ARM State General Registers and Program Counter
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3.7.2 The THUMB state register set

The THUMB state register set is a subset of the ARM state set. The programmer has
direct access to eight general registers, R0-R7, as well as the Program Counter (PC),
a stack pointer register (SP), a link register (LR), and the CPSR. There are banked
Stack Pointers, Link Registers and Saved Process Status Registers (SPSRs) for each
privileged mode. This is shown in ➲Figure 3-4: Register organization in THUMB state.

 Figure 3-4: Register organization in THUMB state

3.7.3 The relationship between ARM and THUMB state registers

The THUMB state registers relate to the ARM state registers in the following way:

• THUMB state R0-R7 and ARM state R0-R7 are identical

• THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs are
identical

• THUMB state SP maps onto ARM state R13
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• THUMB state LR maps onto ARM state R14

• The THUMB state Program Counter maps onto the ARM state Program
Counter (R15)

This relationship is shown in ➲Figure 3-5: Mapping of THUMB state registers onto
ARM state registers.

 Figure 3-5: Mapping of THUMB state registers onto ARM state registers

3.7.4 Accessing Hi registers in THUMB state

In THUMB state, registers R8-R15 (the Hi registers) are not part of the standard
register set. However, the assembly language programmer has limited access to
them, and can use them for fast temporary storage.

A value may be transferred from a register in the range R0-R7 (a Lo register) to a Hi
register, and from a Hi register to a Lo register, using special variants of the MOV
instruction. Hi register values can also be compared against or added to Lo register
values with the CMP and ADD instructions. See ➲5.5 Format 5: Hi register operations/
branch exchange on page 5-13.

R0

R1
R2

R3

R5
R6

R7
R8
R9

R10
R11
R12

Stack Pointer (R13)
Link Register (R14)

Program Counter (R15)

R0

R1
R2

R3

R5

R6

R7

Stack Pointer (SP)
Link Register (LR)

Program Counter (PC)

CPSR CPSR
SPSR SPSR

THUMB state ARM state

R4R4

Lo
 r

eg
is

te
rs

H
i r

eg
is

te
rs



Programmer’s Model

ARM7TDMI Data Sheet
ARM DDI 0029E

3-8

O
pe

n 
A

cc
es

s

3.8 The Program Status Registers
The ARM7TDMI contains a Current Program Status Register (CPSR), plus five Saved
Program Status Registers (SPSRs) for use by exception handlers. These registers

• hold information about the most recently performed ALU operation

• control the enabling and disabling of interrupts

• set the processor operating mode

The arrangement of bits is shown in ➲Figure 3-6: Program status register format.

 Figure 3-6: Program status register format

3.8.1 The condition code flags

The N, Z, C and V bits are the condition code flags. These may be changed as a result
of arithmetic and logical operations, and may be tested to determine whether an
instruction should be executed.

In ARM state, all instructions may be executed conditionally: see ➲4.2 The Condition
Field on page 4-5 for details.

In THUMB state, only the Branch instruction is capable of conditional execution: see
➲5.17 Format 17: software interrupt on page 5-38

3.8.2 The control bits

The bottom 8 bits of a PSR (incorporating I, F, T and M[4:0]) are known collectively as
the control bits. These will change when an exception arises. If the processor is
operating in a privileged mode, they can also be manipulated by software.

The T bit This reflects the operating state. When this bit is set, the
processor is executing in THUMB state, otherwise it is
executing in ARM state. This is reflected on the TBIT
external signal.

Note that the software must never change the state of the
TBIT in the CPSR. If this happens, the processor will
enter an unpredictable state.
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Interrupt disable bits The I and F bits are the interrupt disable bits. When set,
these disable the IRQ and FIQ interrupts respectively.

The mode bits The M4, M3, M2, M1 and M0 bits (M[4:0]) are the mode
bits. These determine the processor’s operating mode,
as shown in ➲Table 3-1: PSR mode bit values on page
3-9. Not all combinations of the mode bits define a valid
processor mode. Only those explicitly described shall be
used. The user should be aware that if any illegal value
is programmed into the mode bits, M[4:0], then the
processor will enter an unrecoverable state. If this
occurs, reset should be applied.

Reserved bits The remaining bits in the PSRs are reserved. When
changing a PSR’s flag or control bits, you must ensure
that these unused bits are not altered. Also, your
program should not rely on them containing specific
values, since in future processors they may read as one
or zero.

M[4:0] Mode Visible THUMB state
registers

Visible ARM state
registers

10000 User R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR

10001 FIQ R7..R0,
LR_fiq, SP_fiq
PC, CPSR, SPSR_fiq

R7..R0,
R14_fiq..R8_fiq,
PC, CPSR, SPSR_fiq

10010 IRQ R7..R0,
LR_irq, SP_irq
PC, CPSR, SPSR_irq

R12..R0,
R14_irq..R13_irq,
PC, CPSR, SPSR_irq

10011 Supervisor R7..R0,
LR_svc, SP_svc,
PC, CPSR, SPSR_svc

R12..R0,
R14_svc..R13_svc,
PC, CPSR, SPSR_svc

10111 Abort R7..R0,
LR_abt, SP_abt,
PC, CPSR, SPSR_abt

R12..R0,
R14_abt..R13_abt,
PC, CPSR, SPSR_abt

11011 Undefined R7..R0
LR_und, SP_und,
PC, CPSR, SPSR_und

R12..R0,
R14_und..R13_und,
PC, CPSR

11111 System R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR

 Table 3-1: PSR mode bit values
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3.9 Exceptions
Exceptions arise whenever the normal flow of a program has to be halted temporarily,
for example to service an interrupt from a peripheral. Before an exception can be
handled, the current processor state must be preserved so that the original program
can resume when the handler routine has finished.

It is possible for several exceptions to arise at the same time. If this happens, they are
dealt with in a fixed order - see ➲3.9.10 Exception priorities on page 3-14.

3.9.1 Action on entering an exception

When handling an exception, the ARM7TDMI:

1 Preserves the address of the next instruction in the appropriate Link Register.
If the exception has been entered from ARM state, then the address of the
next instruction is copied into the Link Register (that is, current PC + 4 or PC
+ 8 depending on the exception. See ➲Table 3-2: Exception entry/exit on
page 3-11 for details). If the exception has been entered from THUMB state,
then the value written into the Link Register is the current PC offset by a value
such that the program resumes from the correct place on return from the
exception. This means that the exception handler need not determine which
state the exception was entered from. For example, in the case of SWI, MOVS
PC, R14_svc  will always return to the next instruction regardless of whether
the SWI was executed in ARM or THUMB state.

2 Copies the CPSR into the appropriate SPSR

3 Forces the CPSR mode bits to a value which depends on the exception

4 Forces the PC to fetch the next instruction from the relevant exception vector

It may also set the interrupt disable flags to prevent otherwise unmanageable nestings
of exceptions.

If the processor is in THUMB state when an exception occurs, it will automatically
switch into ARM state when the PC is loaded with the exception vector address.

3.9.2 Action on leaving an exception

On completion, the exception handler:

1 Moves the Link Register, minus an offset where appropriate, to the PC. (The
offset will vary depending on the type of exception.)

2 Copies the SPSR back to the CPSR

3 Clears the interrupt disable flags, if they were set on entry

Note An explicit switch back to THUMB state is never needed, since restoring the CPSR
from the SPSR automatically sets the T bit to the value it held immediately prior to the
exception.
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3.9.3 Exception entry/exit summary

➲Table 3-2: Exception entry/exit summarises the PC value preserved in the relevant
R14 on exception entry, and the recommended instruction for exiting the exception
handler.

Notes

1 Where PC is the address of the BL/SWI/Undefined Instruction fetch which had
the prefetch abort.

2 Where PC is the address of the instruction which did not get executed since
the FIQ or IRQ took priority.

3 Where PC is the address of the Load or Store instruction which generated the
data abort.

4 The value saved in R14_svc upon reset is unpredictable.

3.9.4 FIQ

The FIQ (Fast Interrupt Request) exception is designed to support a data transfer or
channel process, and in ARM state has sufficient private registers to remove the need
for register saving (thus minimising the overhead of context switching).

FIQ is externally generated by taking the nFIQ input LOW. This input can except either
synchronous or asynchronous transitions, depending on the state of the ISYNC input
signal. When ISYNC is LOW, nFIQ and nIRQ are considered asynchronous, and a
cycle delay for synchronization is incurred before the interrupt can affect the processor
flow.

Irrespective of whether the exception was entered from ARM or Thumb state, a FIQ
handler should leave the interrupt by executing

SUBS PC,R14_fiq,#4

Return Instruction Previous State
ARM THUMB
R14_x R14_x

Notes

BL MOV PC, R14 PC + 4 PC + 2 1

SWI MOVS PC, R14_svc PC + 4 PC + 2 1

UDEF MOVS PC, R14_und PC + 4 PC + 2 1

FIQ SUBS PC, R14_fiq, #4 PC + 4 PC + 4 2

IRQ SUBS PC, R14_irq, #4 PC + 4 PC + 4 2

PABT SUBS PC, R14_abt, #4 PC + 4 PC + 4 1

DABT SUBS PC, R14_abt, #8 PC + 8 PC + 8 3

RESET NA - - 4

 Table 3-2: Exception entry/exit
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FIQ may be disabled by setting the CPSR’s F flag (but note that this is not possible
from User mode). If the F flag is clear, ARM7TDMI checks for a LOW level on the
output of the FIQ synchroniser at the end of each instruction.

3.9.5 IRQ

The IRQ (Interrupt Request) exception is a normal interrupt caused by a LOW level on
the nIRQ input. IRQ has a lower priority than FIQ and is masked out when a FIQ
sequence is entered. It may be disabled at any time by setting the I bit in the CPSR,
though this can only be done from a privileged (non-User) mode.

Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ
handler should return from the interrupt by executing

SUBS PC,R14_irq,#4

3.9.6 Abort

An abort indicates that the current memory access cannot be completed. It can be
signalled by the external ABORT  input. ARM7TDMI checks for the abort exception
during memory access cycles.

There are two types of abort:

Prefetch abort occurs during an instruction prefetch.

Data abort occurs during a data access.

If a prefetch abort occurs, the prefetched instruction is marked as invalid, but the
exception will not be taken until the instruction reaches the head of the pipeline. If the
instruction is not executed - for example because a branch occurs while it is in the
pipeline - the abort does not take place.

If a data abort occurs, the action taken depends on the instruction type:

1 Single data transfer instructions (LDR, STR) write back modified base
registers: the Abort handler must be aware of this.

2 The swap instruction (SWP) is aborted as though it had not been executed.

3 Block data transfer instructions (LDM, STM) complete. If write-back is set, the
base is updated. If the instruction would have overwritten the base with data
(ie it has the base in the transfer list), the overwriting is prevented. All register
overwriting is prevented after an abort is indicated, which means in particular
that R15 (always the last register to be transferred) is preserved in an aborted
LDM instruction.

The abort mechanism allows the implementation of a demand paged virtual memory
system. In such a system the processor is allowed to generate arbitrary addresses.
When the data at an address is unavailable, the Memory Management Unit (MMU)
signals an abort. The abort handler must then work out the cause of the abort, make
the requested data available, and retry the aborted instruction. The application
program needs no knowledge of the amount of memory available to it, nor is its state
in any way affected by the abort.
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After fixing the reason for the abort, the handler should execute the following
irrespective of the state (ARM or Thumb):

SUBS PC,R14_abt,#4 for a prefetch abort, or

SUBS PC,R14_abt,#8 for a data abort

This restores both the PC and the CPSR, and retries the aborted instruction.

3.9.7 Software interrupt

The software interrupt instruction (SWI) is used for entering Supervisor mode, usually
to request a particular supervisor function. A SWI handler should return by executing
the following irrespective of the state (ARM or Thumb):

MOV PC, R14_svc

This restores the PC and CPSR, and returns to the instruction following the SWI.

3.9.8 Undefined instruction

When ARM7TDMI comes across an instruction which it cannot handle, it takes the
undefined instruction trap. This mechanism may be used to extend either the THUMB
or ARM instruction set by software emulation.

After emulating the failed instruction, the trap handler should execute the following
irrespective of the state (ARM or Thumb):

MOVS PC,R14_und

This restores the CPSR and returns to the instruction following the undefined
instruction.

3.9.9 Exception vectors

The following table shows the exception vector addresses.

Address  Exception Mode on entry

0x00000000  Reset Supervisor

0x00000004  Undefined instruction Undefined

0x00000008  Software interrupt Supervisor

0x0000000C  Abort (prefetch) Abort

0x00000010  Abort (data) Abort

0x00000014 Reserved Reserved

0x00000018  IRQ IRQ

0x0000001C  FIQ FIQ

 Table 3-3: Exception vectors
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3.9.10 Exception priorities

When multiple exceptions arise at the same time, a fixed priority system determines
the order in which they are handled:

Highest priority:

1 Reset

2 Data abort

3 FIQ

4 IRQ

5 Prefetch abort

Lowest priority:

6 Undefined Instruction, Software interrupt.

Not all exceptions can occur at once:

Undefined Instruction and Software Interrupt are mutually exclusive, since they each
correspond to particular (non-overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (ie the CPSR’s
F flag is clear), ARM7TDMI enters the data abort handler and then immediately
proceeds to the FIQ vector. A normal return from FIQ will cause the data abort handler
to resume execution. Placing data abort at a higher priority than FIQ is necessary to
ensure that the transfer error does not escape detection. The time for this exception
entry should be added to worst-case FIQ latency calculations.

3.10 Interrupt Latencies
The worst case latency for FIQ, assuming that it is enabled, consists of the longest
time the request can take to pass through the synchroniser (Tsyncmax if
asynchronous), plus the time for the longest instruction to complete (Tldm, the longest
instruction is an LDM which loads all the registers including the PC), plus the time for
the data abort entry (Texc), plus the time for FIQ entry (Tfiq). At the end of this time
ARM7TDMI will be executing the instruction at 0x1C.

Tsyncmax is 3 processor cycles, Tldm is 20 cycles, Texc is 3 cycles, and Tfiq is 2
cycles. The total time is therefore 28 processor cycles. This is just over 1.4
microseconds in a system which uses a continuous 20 MHz processor clock. The
maximum IRQ latency calculation is similar, but must allow for the fact that FIQ has
higher priority and could delay entry into the IRQ handling routine for an arbitrary
length of time. The minimum latency for FIQ or IRQ consists of the shortest time the
request can take through the synchroniser (Tsyncmin) plus Tfiq. This is 4 processor
cycles.
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3.11 Reset
When the nRESET signal goes LOW, ARM7TDMI abandons the executing instruction
and then continues to fetch instructions from incrementing word addresses.

When nRESET goes HIGH again, ARM7TDMI:

1 Overwrites R14_svc and SPSR_svc by copying the current values of the PC
and CPSR into them. The value of the saved PC and SPSR is not defined.

2 Forces M[4:0] to 10011 (Supervisor mode), sets the I and F bits in the CPSR,
and clears the CPSR’s T bit.

3 Forces the PC to fetch the next instruction from address 0x00.

4 Execution resumes in ARM state.



Programmer’s Model

ARM7TDMI Data Sheet
ARM DDI 0029E

3-16

O
pe

n 
A

cc
es

s


