SIM(5)
NAME
sim - format of .sim files read by esim, crystal, etc.
DESCRIPTION
The simulation tools crystal(1) and esim(1) accept
a circuit description in .sim format.
There is a single .sim file for the entire circuit, unlike
Magic's ext(5) format in which there is a .ext file
for every cell in a hierarchical design.
A .sim file consists of a series of lines, each of which begins
with a key letter.
The key letter beginning a line determines how the remainder
of the line is interpreted.
The following are the list of key letters understood.
- | units: s tech: tech format: MIT|LBL|SU
-
If present, this must be the first line in the .sim file.
It identifies the technology of this circuit as tech and
gives a scale factor for units of linear dimension as s.
All linear dimensions appearing in the .sim file are
multiplied by s to give centimicrons. The format field
signifies the sim variant. MIT and SU are compatible and understood
by all tools. LBL is understood only by gemini(1).
- type g s d l w x y g=gattrs s=sattrs d=dattrs
-
Defines a transistor of type type. Currently, type may be
e or d for NMOS, or p or n for CMOS.
The name of the node to which the gate, source, and drain of the
transistor are connected are given by g, s, and d
respectively.
The length and width of the transistor are l and w.
The next two tokens, x and y, are optional. If present,
they give the location of a point inside the gate region of the transistor.
The last three tokens are the attribute lists for the transistor
gate, source, and drain. If no attributes are present for a particular
terminal, the corresponding attribute list may be absent (i.e, there
may be no g= field at all).
The attribute lists gattrs, etc. are comma-separated lists of
labels. The label names should not include any spaces, although some
tools can accept label names with spaces if they are enclosed
in double quotes.
In version 6.4.5 and later
the default format produced by ext2sim is SU. In this format the attribute
of the gate starting with S_ is the substrate node of the fet. The attributes
of the gate, and source and substrate starting with A_, P_ are the area and
perimeter (summed for that node only once) of the source and drain respectively.
This addition to the format is backwards compatible.
- C n1 n2 cap
-
Defines a capacitor between nodes n1 and n2.
The value of the capacitor is cap femtofarads.
NOTE:
since many analysis tools compute transistor gate capacitance themselves
from the transistor's area and perimeter,
the capacitance between a node and substrate (GND!) normally
does not include the capacitance from transistor gates connected
to that node.
If the .sim file was produced by ext2sim(1), check
the technology file that was used to produce the original .ext
files to see whether transistor gate capacitance is included or
excluded;
see ""Magic Maintainer's Manual 2 - The Technology File for details.
- R node res
-
Defines the lumped resistance of node node to be res ohms.
This construct is only interpreted by a few programs.
- r node1 node2 res
-
Defines an explicit resistor between nodes node1 and
node2 of resistance res ohms.
This construct is only interpreted by a few programs.
- N node darea dperim parea pperim marea mperim
-
As an alternative to computed capacitances, some tools expect
the total perimeter and area of the polysilicon, diffusion, and
metal in each node to be reported in the .sim file.
The N construct associates diffusion area darea
(in square centimicrons) and diffusion perimeter dperim (in centimicrons)
with node node, polysilicon area parea and perimeter
pperim, and metal area marea and perimeter mperim.
This construct is technology dependent and obsolete.
- A node attr
-
Associates attribute attr for node node. The string
attr should contain no blanks.
- = node1 node2
-
Each node in a .sim file is named implicitly by having it appear in
a transistor definition. All node names appearing in a .sim file
are assumed to be distinct.
Some tools, such as esim(1), recognize aliases for node names.
The = construct allows the name node2 to be
defined as an alias for the name node1. Aliases defined
by means of this construct may not appear anywhere else in the .sim file.
SEE ALSO
crystal(1),
esim(1),
ext2sim(1),
ext(5)