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Abstract—In System-on-Chip designs, third party IP reuse is
prevalent as it increases productivity and reduces time-to-market.
These IPs can be classified as untrusted designs since the user
has no insight into IP verification or quality control process. In
practice, it is generally assumed that the IP has been functionally
validated by developers and thorough verification at user end is
not performed.

In the current state-of-the-art, lint tools are primarily used to
determine IP design quality. These tools pinpoint design issues
by performing static analysis of RTL code but have a limitation
that they do not perform behavioral analysis. In this paper, we
present a knowledge-guided methodology, which identifies RTL
behavior by finding correspondences with a knowledge base of
previously analysed trusted designs. In comparison to existing
techniques, our approach uses combination of static and dynamic
analysis techniques to better approximate design behavior. We
tested our methodology by analysing several IEEE-754 floating
point soft IPs. We define identification coverage and confidence
factor metric to quantify our IP analysis results.

Keywords-RTL analysis; Ontology; Knowledge base; Expert
systems; RTL Lint

I. INTRODUCTION

The integration of third-party IPs is a common practice in

system-on-chip designs. This allows semiconductor companies

to focus their R&D effort on developing their differentiating

technology and use third-party IPs for standard-based IPs,

which provide minimal differentiation.

A soft intellectual property (Soft IP) core is a reusable unit

of logic, which can be synthesized to logic gates. In recent

years, the task of verifying an IP against its specification is

becoming daunting due to increasing design complexity. In

today’s global economy, IPs are being designed and verified

at different geographic locations. The multi-site development

of IPs increases the risk to design quality.

Verification is a quality control process, which is used to

evaluate whether a design complies with its specifications.

The current verification techniques can be broadly classified

into simulation or formal methods. These techniques require

building a complex verification environment, which is a time

consuming process. In a typical project, 70% of the develop-

ment time is devoted to verification process [1]. The produc-

tivity gap affecting verification means that thorough testing of

third party IPs is generally not done. The common practice

is to perform basic integration tests and RTL lint checks to

flag any IP design issues [2]. However, the importance of

thorough design analysis is not overstated. IP design issues, if

discovered later than RTL sign-off stage increase the design

turn around time and in worst case result in chip re-spins.

In this paper, we propose a knowledge-guided IP analy-

sis methodology, which aids engineers in mitigating risk of

third-party IP reuse. In comparison to existing techniques,

we perform IP analysis by finding correspondences with a

RTL knowledge base (KB) of trusted designs. Our validation

approach complements existing IP validation techniques and

acts as a lint tool with a behavioral analysis capability. In

current practice, an engineer who is analysing a third-party

IP has to reverse engineer IP design behavior by manually

reviewing specifications and RTL code. The application of our

work is to assist an engineer in reverse engineering the design

behavior by performing RTL behavioral annotations.

II. BACKGROUND AND RELATED WORK

In general, static analysis (SA) based techniques are used

to identify possible bugs in code as well as indicate how

closely certain segments of code match specifications. In

theoretical computer science, through Rice’s theorem and the

undecidability of the Halting problem, it has been proved

that finding any kind of violation of a specification on the

final result of a program is undecidable [3]. The only way to

determine how a program will behave is to perform exhaustive

simulations. In any case, being forewarned about a bug is

valuable as it gives immediate feedback about what may be

wrong in the implementation [4]. In our approach, we address

the limitations of SA techniques by performing evaluation of

code fragments to better approximate design behavior. We are

not doing design verification, in the sense, of finding bugs

in the design. We are validating that the design meets the

specifications by levels of confidence. The individual elements

of our technique can be roughly related to work in following

areas: (a) reverse engineering, (b) IP quality evaluation, and

(c) application of KB systems in hardware design.

Reverse engineering has been an active topic of research for

many years. Most of the techniques proposed so far are for a

gate-level netlist [5] [6]. Our approach identifies RTL behavior,

which is at higher abstraction level than netlist level.

Various approaches have been proposed for IP quality

evaluation [7] [8]. Quality metrics have been proposed in the

past such as Quality Intellectual Property (QIP) by virtual



socket interface alliance (VSIA) [7]. The VSIA determined

four factors that determine overall quality of IP: authoring,

verification, the maturity of the IP , and the capabilities of the

provider. Our approach provides additional metrics to quantify

IP design quality.
In SoC design, RTL lint tools are primarily used for ensur-

ing IP design quality. Various commercial tools are available,

which check design issues with respect to DFT (design for

testability), synthesis, naming conventions and design style [2].

The basic principle used in these tools is static analysis of RTL

code. These tools do not perform RTL behavioral analysis and

lack the ability to add new user-defined rule templates.
KB systems based on artificial intelligence (AI) technology

have been proposed in the past for fast prototyping of hardware

designs and for hardware-software partitioning [9] [10]. IBM

estimates that it has saved more than $100 million during

the last decade in direct development costs and reduced time

to market by using AI technology for the verification of its

processors [11]. Our validation approach is also an AI based

technique but the application of our work is in RTL analysis

without performing exhaustive simulations.

III. RTL ANALYSIS METHODOLOGY

The main elements of our system are: (a) RTL KB of trusted

designs (b) property based model for each design domain, and

(c) RTL analysis rule base. Figure1 provides an overview of

our approach. The expert system tool that we have used is the

C Language Integrated Production System (CLIPS), originally

developed by NASA [12] [13]. In what follows, we describe

each element of our technique.

A. RTL KB
IP vendors deliver soft IP RTL database as a set of files, each

of which generally corresponds to a design module. In our

approach, we do a semantically equivalent translation of RTL

code into CLIPS facts, which we term as RTL-CLIPS. The

RTL-CLIPS preserves the RTL code structure and enables the

rule-base to use code semantics to infer a function or generate

some high level fact, e.g., to identify a process as an FSM and

list its state transition graph. The RTL KB contains a database

of previously analysed trusted designs in RTL-CLIPS format.
CLIPS uses a forward-chaining inference strategy based on

the Rete pattern-matching algorithm [12]. The CLIPS rules are

written by creating a pattern using a set of RTL-CLIPS facts.

When a match is achieved, the rule “fires” and an inference

is made by asserting new facts.

TABLE I: Examples of HDL represented in Knowledge Base

VHDL Element CLIPS Template

VARIABLE x; (var (id gen1) (text ”x”) (class variable))

z := x + y; (stmt (cat MATH +) (ins gen1 gen2) (outs gen3))

PROCESS (x) (stmt (cat BLOCK CONC-SEQ) (ins gen1))

BEGIN stmt4; stmt5;
END;

(stmt (cat BLOCK) (stmts gen4 gen5))

1) Basic Constructs: Table I gives some examples of

VHDL language elements and their CLIPS templates. We

define two kinds of templates, var for data and stmt for

commands. Each of these templates contains a slot (the CLIPS

term for property) for an id and a slot for a parent id. Each fact,

an instance of these templates, has a unique id, and each has

a parent, to maintain the block structure of the VHDL code.

For ids we use arbitrary generated labels of the form: gen1,

gen2, etc. V ar templates contain slots for text, the variable

name from the VHDL code, and class, to distinguish signals

from variables.

Stmt templates include a multislot cat, for category. A

CLIPS slot holds one value whereas a multislot holds an

ordered list of values. We define the category as a path through

a tree of commands. For example, “MATH +” for addition.

Stmt templates also include multislots for ins and outs, for

ports. In general, the contents of a code block are known by

the references to their parent; however for blocks of sequential

statements, we also define a stmts multislot in the parent, to

give the order of execution. The parent is a stmt template

in the category “BLOCK” which broadly includes the VHDL

block statements.

This representation is equivalent to a data flow diagram,

where each stmt is a node and each var is a hyperedge. To

simplify static analysis of code we require that every edge has

a source and sink; therefore, we define statement categories

for constants and ports. Figure 2 illustrates the relationship of

these CLIPS templates and data flow diagrams.

B. Property-based model

Our technique is applicable to soft IP designs, which

conform to a standard specification. Standards are published

documents that are universally understood to ensure com-

patible functionality and interoperability. Standard compliant

IPs have correspondences in design behavior. For example,

every floating point unit (FPU) IP compliant to IEEE-754

standard supports following rounding modes: “round to zero”,

“round up”, “round down” and “round to nearest even” [14].

In our approach, KB has a property based model (PBM)

for standard based IPs. A property is a partial specification

which is some element of the expected design behavior. At the

highest abstraction level, the PBM for a design is represented

by its ontology. An ontology is defined as a knowledge repre-

sentation model to explicitly represent a domain by defining

its concepts and various relationships among the concepts [15]

[16]. For an IP, the hierarchical functional decomposition of

design behavior results in ontological concepts corresponding

to behavioral functions. Figure 3 is an example of a fragment

of ontology for FPU domain. The FPU ontology was described

to the protégé tool and visualized through OntoViz tab [17].

In the ontology, each high level concept is defined in

terms of lower level concepts using relationships, for example

“has-function”, “has-subfunction”, “has-operation” and “has-

feature”. The relationships create a conceptual network, which

corresponds to abstract behavioral model for the design. In our

ontology representation scheme, functions implement a stand-

alone logic while subfunctions are used by other functions

to implement bit-level operations. For example, floating-point



(a) RTL-KB generation (b) RTL-KB application

Fig. 1: RTL Analysis overview
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(stmt (cat PORT IN) (outs gen1))
(var (id gen1) (text “A”))
(stmt (cat CONST “5”) (outs gen2))
(var (id gen2) (text “B”))
(stmt (cat PORT IN) (outs gen3))
(var (id gen3) (text “C”))
(stmt (cat CONST “7”) (outs gen4))
(var (id gen4) (text “D”))
(stmt (cat MATH *) (ins gen1 gen2) (outs gen5))
(var (id gen5) (text “E”))
(stmt (cat MATH *) (ins gen3 gen4) (outs gen6))
(var (id gen6) (text “F”))
(stmt (cat MATH +) (ins gen5 gen6) (outs gen7))
(var (id gen7) (text “G”))
(stmt (cat PORT OUT) (ins gen7))

Fig. 2: RTL-CLIPS Facts and Equivalent Data Flow Diagram

add “FPADD” is a FPU function and “rounding” is a FPU

subfunction. The low level properties of an IP are listed as

features. For example, precision is a feature of a FPU IP.

An attribute is a value of a feature. For example, single

or double are values of a feature, precision. At the lowest

level, operations describe the composition of functions and

subfunctions. For example, “exponent difference” operation

for denormalization subfunction.

The expert further refines the PBM using combination of

following notations 1) library of template code fragments

with corresponding annotations to infer behavioral functions,

2) expected output values of a behavioral function when a

reference input is applied, and 3) design assertions.

The library of template code fragments are selected by

design experts as a pattern for concept to code mapping. The

functions and operation ontological concepts correspond to

code fragments (sequence of control and data operations) in

RTL and get associated with a set of rules in KB. The con-

cepts inferred by pattern matching rules are further confirmed

through application of test vectors. The KB also has formal

properties for a design as a library of assertions which are

created in property specification language [18].

We explain the property based model using an example for

synchronous FIFO.
1) Example - Property based model for FIFO: The property

based model of a FIFO is represented in Figure 4. The

model has a hypothesis about FIFO design composition in

terms of behavioral functions. In Figure 4 “push data”, “pop

data” and “exception handling” are categorized as behavioral

functions for FIFO design. The expert knowledge about a

FIFO design is also captured in the model. For example, FIFO

is categorized as a data buffer and as a single clock-domain

design. The designer also writes assertions to capture FIFO

design behavior. The template code fragments associated with

the model provide hints for existence of behavioral functions.

For example, Table II lists FIFO RTL code fragments and their

corresponding annotations.

C. RTL rule-base
The RTL-KB is in form of CLIPS fact representation. The

properties of the CLIPS code are made into CLIPS rules with

the assistance of a code analysis tool. The tool allows an

expert user to provide an annotation for a fragment of RTL

code. The user identifies the annotation and associates it with

sample CLIPS facts from the converted RTL code. The tool

then assembles the code fragment as antecedent and annotation

as consequent into a set of CLIPS rules. The resulting rules

then automatically annotate sections of trusted RTL code and

low-level annotations are used for performing higher-level

annotations. The expert’s skill in recognizing code fragments

becomes part of the system and similar code fragments in

untrusted RTL get annotated with an equivalent concept. The

tool simplifies the work flow for the user who need not know

the form and syntax of CLIPS rules.
Our methodology has a confidence factor (CF) associated

with each rule in RTL rule-base to support partial matching

and accommodate expert knowledge about significance of a

design property. The CF given to the rule by an expert is in

the range of 0 to 1. CF is the likelihood of being accurate in

making a inference when a particular design property exists

in RTL code. The CF allows the rule base to identify high

level design functions even for partial matching of the design



Fig. 3: Design ontology for FPU design domain

TABLE II: Example - FIFO RTL code fragments with annotations performed by rule-base

S.No Code fragment Annotation(first level) Annotation (second level)
1 always @(posedge pclk or negedge presetn)

if(!presetn)
pclk annotated as clock and resetn
annotated as active low reset.

The always block gets annotated as “clocked pro-
cess”.

2 rd addr <= rd addr + 1
wr addr <= wr addr + 1

rd addr and wr addr annotated as
up counters

3 data out <= memory[rd addr] rd addr is annotated as read ad-
dress

Based on first level annotations in (2) and (3) rd addr
is annotated as read pointer. The corresponding code
blocks are annotated as pop logic

4 memory[wr addr] <= data in wr addr is annotated as write ad-
dress

wr addr is annotated as write pointer. The corre-
sponding code blocks are annotated as push logic.

5 assign incr fifo word cnt = (push,pop = 2’b01)?
1’b1 : 1’b0

push and pop annotated as control
signals

Fig. 4: Property based model of a FIFO design

properties. The CF’s are merged for rules inferring a function

at same hierarchical level using parallel combination formula.

We produce the CF of inferring a higher level module, based

on the existence of lower modules, by the average (weighted)

of the CF’s of lower level modules. Following is a description

of various category of rules.

a) Behavioral analysis rules: These rules identify in

an untrusted RTL, the existence of function, operations and

features specified in the PBM. For example, following is a

RTL code fragment, which implements count leading zeros

(LZ) subfunction. The associated pseudo rule which gets

implemented in CLIPS to infer a LZ function is also listed.

"RTL code fragment 1 for identifying LZ function"
elsif (fracAddOut_s3(31 downto 28) = "0001") then

tmpOUT := "00010";
elsif (fracAddOut_s3(31 downto 27) = "00001") then

tmpOUT := "00011";

"Pseudo-rule: infer leading zeros function"
1) A block of code in a combinational process which has
multiple condition statements or loop construct with
common condition variable, (say x).
2) x is compared against a constant value.If the condition
is true, a variable (say y) gets updated.
3) When control falls from one condition statement to
another the value of y keep on incrementing by 1.



The KB system keeps on improving as more designs are

analysed and rules get added to capture variations in RTL

implementation. For example, If KB contains FPU designs

with different RTL implementation of LZ function, then each

of those different code fragments can be used as a pattern for a

new rule to infer LZ function. The addition of trusted designs

and new design domains to the KB increases the accuracy of

rule based inference process. Following is CLIPS format of

the LZ pseudo rule

(defrule FPU_BEHAV_10::LEADING-ZERO-ANNOTATE
(declare (auto-focus TRUE))
(stmt (cat BLOCK)(id ?f1pid) (stmts ?f1id ?f2id ?f3id))
(stmt (parentid ?f1pid) (id ?f1id)(cat RANGE) (text ?f1txt&:
(member$ ?f1txt(create$ TO DOWNTO)))(ins ?sigID ?rangeID1&:(stringp
?rangeID1) ?rangeID2&˜?rangeID1&:(stringp ?rangeID2))(outs ?f1out))

(stmt(parentid ?f1pid) (id ?f2id) (cat MATH) (text ==) (ins ?f1out
?f2in2&:(stringp ?f2in2))(outs ?f2out))

(stmt (parentid ?f1pid) (id ?f3id) (cat SEQ) (text IF) (ins ?f2out)
(stmts ?f3stmt1 ?f3stmt2))

(stmt (parentid ?f3id) (id ?f3stmt1) (cat BLOCK)(stmts ?f4stmt1))
(stmt (parentid ?f3stmt1) (id ?f4stmt1) (cat MATH) (text ASSIGN)

(ins ?f3In) (outs ?f3it ))
(test (= (+(-(string-to-field ?rangeID1)(string-to-field ?rangeID2))

1)(str-index "1" ?f2in2)))
=>
(bind ?process (find-process ?f1pid))
(assert (inference (module ?module)(process ?process)

(annotation "LZ")(cf 0.9)))

b) Datapath rules: These rules use design datapath

knowledge to find associations of an unannotated process with

annotated processes. The inference done by these rules have

low CF. In our approach, we consider concurrent assignment

statements also as processes. For a “FPU Add” function in the

PBM, the expert specifies its datapath as “fraction addition”

subfunction followed by “LZ” subfunction and then “fraction

left-shift” subfunction. In Figure 5, which shows a fragment

of a process dependency graph (pdg) for FPU, process P0 and

P1 are annotated with “fraction add” and “fraction left shift”

subfunctions respectively. The process P1 remains unannotated

as antecedent code pattern for LZ rule does not match with

the RTL. In that case, “FPU add datapath” rule annotates P1

with LZ subfunction.

Fig. 5: Fragment of pdg for floating point add function

c) Syntactic rules: This rule-set analyzes RTL code

structure and infers common design concepts like counters,

look up table, memory components, FIFO, FSM etc. The

processes get annotated as sequential, combinational, control-

only process, and for occurrence of arithmetic operations.

These rules also perform custom RTL lint checks. Following

is an example of syntactic lint rule.

Pseudo Rule :
a) Generics should have default value assigned in entity declaration.
b) Input signals to the design should be registered.
c) Output signals from the design should be registered outputs.

d) Evaluation Rules: In our approach, the RTL is parsed

and represented as CLIPS fact. The CLIPS program is then

run to simulate the execution of the VHDL code and it acts

as an event based simulator. Every behavioral function is

associated with a evaluation rule, which runs a sample test

vector associated with a behavioral function. The success of

an evaluation rule increases the CF of the function inferred by

behavioral analysis rule.

e) I/O port rules: I/O port signals describe the interface

for the design. In our approach, an expert associates a label

with an IO signal name in trusted RTL to map names from

different vendors to an equivalent concept. For example,

“div zero o”, “div by zero” signal names are labelled as

“divide by zero” for FPU domain. This is captured in an I/O

label dictionary. We then assume that the I/O signals of the

untrusted IP are also labeled by users using concepts from

the IO label dictionary. This aids behavioral analysis rules to

annotate RTL code fragments. For example, if input port “rnd”

is labelled as rounding signal, then RTL code fragments where

“rnd” is a control signal are annotated as rounding subfunction.

IV. RESULTS

Coverage is an important concept in RTL design verification

and is defined in terms of code/functional coverage metrics.

The coverage metrics in our case concern functionality iden-

tification coverage, thus our metrics are expressed in terms

of confidence factors. We identify the functionality of soft

IP design modules based on the existence of their behavioral

properties. This process does not necessarily guarantee valid

design behavior. Therefore we cannot use traditional coverage

metrics such as code coverage. For quantifying our results, we

use functional identification (Id) coverage as a metric, which

is percentage of functions listed in PBM model that can be

inferred from an untrusted RTL.

We have tested our approach by developing a prototype KB

system using CLIPS. The tool supports VHDL and for IPs in

verilog, we have used opensource verilog to vhdl converter

[19]. The KB was then applied to perform RTL analysis of

FPU IPs downloaded from opencores.org. The FPU PBM has

11 functions, 15 subfunctions and 89 features. In Table III,

the Id coverage for each IP is proportional to number of high

level design functions inferred. If a function gets inferred but

all of its subfunctions and properties cannot be inferred then

CF for a function is low and it decreases overall CF. The CF

listed for each IP is the average confidence of the rule-base

about the inferences performed for the IP. Figure 6 provides an

example of html based annotation report that was generated

for FPU. If the Id coverage for a 3rd Party IP is low, then

it is a hint to the user about possible design quality issues.

The user can review the annotation reports to find the design

properties listed in PBM but missing in the 3rd Party IP.



TABLE III: RTL analysis results using RTL rule base

Design information Analysis results

IP name No. of
design
modules

No. of
lines of
code

input
ports

output
ports

No. of rules
fired

Properties
identified

Identification-
coverage

Overall
Confidence
factor

fpuOpencores1 [20] 11 1176 5 9 69 34 70% 72 %

fpuOpencores2 [21] 14 2396 5 11 82 42 77% 80 %

fpuOpencores3 [22] 24 3259 4 1 31 15 55% 56 %

fpuOpencores4 [23] 7 1912 7 7 46 22 68% 63 %

Fig. 6: Html annotation report

V. CONCLUSION

We have presented a knowledge-guided methodology to

perform RTL analysis of third-party Soft-IPs. Our validation

approach can assist design engineers in understanding of RTL

behavior. The confidence level and identification coverage

results can be used as metrics for IP analysis. The key

challenge for the rule-base is to use successful combination of

behavioral analysis and evaluation rules to make an inference.

For future work, we plan to use assertion synthesis to generate

assertions from RTL and then perform a rule-based analysis

of assertions in CLIPS.
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