Computer Architecture – Set Four

Arithmetic
Arithmetic

Where we’ve been:
- Performance (seconds, cycles, instructions)
- Abstractions:
 - Instruction Set Architecture
 - Assembly Language and Machine Language

What’s up ahead:
- Implementing the Architecture
Numbers

- Bits are just bits (no inherent meaning)
 — conventions define relationship between bits and numbers

- Binary numbers (base 2)
 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...
 decimal: 0...2^n–1

- Of course, it gets more complicated:
 numbers are finite (overflow)
 fractions and real numbers
 negative numbers
 e.g., no MIPS subi instruction; addi can add a negative number

- How do we represent negative numbers?
 i.e., which bit patterns will represent which numbers?
Possible Representations

<table>
<thead>
<tr>
<th></th>
<th>Sign Magnitude</th>
<th>One’s Complement</th>
<th>Two’s Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>000 = +0</td>
<td>000 = +0</td>
<td>000 = +0</td>
<td></td>
</tr>
<tr>
<td>001 = +1</td>
<td>001 = +1</td>
<td>001 = +1</td>
<td></td>
</tr>
<tr>
<td>010 = +2</td>
<td>010 = +2</td>
<td>010 = +2</td>
<td></td>
</tr>
<tr>
<td>011 = +3</td>
<td>011 = +3</td>
<td>011 = +3</td>
<td></td>
</tr>
<tr>
<td>100 = −0</td>
<td>100 = −3</td>
<td>100 = −4</td>
<td></td>
</tr>
<tr>
<td>101 = −1</td>
<td>101 = −2</td>
<td>101 = −3</td>
<td></td>
</tr>
<tr>
<td>110 = −2</td>
<td>110 = −1</td>
<td>110 = −2</td>
<td></td>
</tr>
<tr>
<td>111 = −3</td>
<td>111 = −0</td>
<td>111 = −1</td>
<td></td>
</tr>
</tbody>
</table>

- **Issues:** balance, number of zeros, ease of operations
- Which one is best? Why?
32 bit signed numbers:

\[
\begin{align*}
0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000_{\text{two}} &= 0_{\text{ten}} \\
0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0001_{\text{two}} &= +1_{\text{ten}} \\
0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0010_{\text{two}} &= +2_{\text{ten}} \\
&\ldots \\
0111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1110_{\text{two}} &= +2,147,483,646_{\text{ten}} \\
0111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111_{\text{two}} &= +2,147,483,647_{\text{ten}} \quad \text{maxint} \\
1000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000_{\text{two}} &= -2,147,483,648_{\text{ten}} \quad \text{minint} \\
1000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000_{\text{two}} &= -2,147,483,647_{\text{ten}} \\
1000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0001_{\text{two}} &= -2,147,483,646_{\text{ten}} \\
&\ldots \\
1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1101_{\text{two}} &= -3_{\text{ten}} \\
1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1110_{\text{two}} &= -2_{\text{ten}} \\
1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111_{\text{two}} &= -1_{\text{ten}}
\end{align*}
\]
Two’s Complement Operations

- Negating a two’s complement number: invert all bits and add 1
 - remember: “negate” and “invert” are quite different!
- Converting n bit numbers into numbers with more than n bits:
 - M IPS 16 bit immediate gets converted to 32 bits for arithmetic
 - copy the most significant bit (the sign bit) into the other bits
 - $0010 \rightarrow 0000\ 0010$
 - $1010 \rightarrow 1111\ 1010$
 - "sign extension" (lbu vs. lb)
Addition & Subtraction

- Just like in grade school (carry/borrow 1s)

 \[
 \begin{array}{c}
 0111 \\
 + 0110 \\
 \end{array}
 \begin{array}{c}
 0111 \\
 - 0110 \\
 - 0101 \\
 \end{array}
 \]

- Two’s complement operations easy

 - subtraction using addition of negative numbers

 \[
 \begin{array}{c}
 0111 \\
 + 1010 \\
 \end{array}
 \]

- Overflow (result too large for finite computer word):

 - e.g., adding two n–bit numbers does not yield an n–bit number

 \[
 \begin{array}{c}
 0111 \\
 +0001 \\
 \end{array}
 \begin{array}{c}
 1000 \\
 \end{array}
 \]

 note that overflow term is somewhat misleading, it does not mean a carry “overflowed”
Detecting Overflow

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
 - overflow when adding two positives yields a negative
 - or, adding two negatives gives a positive
 - or, subtract a negative from a positive and get a negative
 - or, subtract a positive from a negative and get a positive
- Consider the operations $A + B$, and $A - B$
 - Can overflow occur if B is 0 ?
 - Can overflow occur if A is 0 ?
Effects of Overflow

- An exception (interrupt) occurs
 - Control jumps to predefined address for exception
 - Interrupted address is saved for possible resumption
- Details based on software system / language
 - example: flight control vs. homework assignment
- Don’t always want to detect overflow
 - new MIPS instructions: addu, addiu, subu

 note: addiu **still sign-extends**!

 note: sltu, sltiu **for unsigned comparisons**
Problem: Consider a logic function with three inputs: A, B, and C.

- Output D is true if at least one input is true
- Output E is true if exactly two inputs are true
- Output F is true only if all three inputs are true

- Show the truth table for these three functions.
- Show the Boolean equations for these three functions.
- Show an implementation consisting of inverters, AND, and OR gates.
Let’s build an ALU to support the andi and ori instructions
 - we’ll just build a 1 bit ALU, and use 32 of them

Possible Implementation (sum−of−products):

<table>
<thead>
<tr>
<th>Operation</th>
<th>Op</th>
<th>A</th>
<th>B</th>
<th>Res</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An ALU (arithmetic logic unit)
Review: The Multiplexor

- Selects one of the inputs to be the output, based on a control input

![Diagram of a multiplexor]

- Note: we call this a 2-input mux even though it has 3 inputs!

- Lets build our ALU using a MUX:
Different Implementations

- Not easy to decide the “best” way to build something
 - Don’t want too many inputs to a single gate
 - Don’t want to have to go through too many gates
 - for our purposes, ease of comprehension is important
- Let’s look at a 1–bit ALU for addition:

\[
\begin{align*}
\text{cout} &= a \cdot b + a \cdot c_{\text{in}} + b \cdot c_{\text{in}} \\
\text{sum} &= a \cdot \text{xor} \cdot b \cdot \text{xor} \cdot c_{\text{in}}
\end{align*}
\]

- How could we build a 1–bit ALU for \text{add}, \text{and}, \text{and} or \text{or}?
- How could we build a 32–bit ALU?
Building a 32 bit ALU
What about subtraction \((a - b)\) ?

- Two’s complement approach: just negate \(b\) and add.
- How do we negate?

- A very clever solution:
Tailoring the ALU to the MIPS

- Need to support the set-on-less-than instruction (slt)
 - remember: slt is an arithmetic instruction
 - produces a 1 if rs < rt and 0 otherwise
 - use subtraction: \((a - b) < 0\) implies \(a < b\)

- Need to support test for equality \((\text{beq } t5, t6, t7)\)
 - use subtraction: \((a - b) = 0\) implies \(a = b\)
Supporting slt

- Can we figure out the idea?
Test for equality

- Notice control lines:

 000 = and
 001 = or
 010 = add
 110 = subtract
 111 = slt

Note: zero is a 1 when the result is zero!
Conclusion

- We can build an ALU to support the MIPS instruction set
 - key idea: use multiplexor to select the output we want
 - we can efficiently perform subtraction using two’s complement
 - we can replicate a 1-bit ALU to produce a 32-bit ALU

- Important points about hardware
 - all of the gates are always working
 - the speed of a gate is affected by the number of inputs to the gate
 - the speed of a circuit is affected by the number of gates in series
 (on the “critical path” or the “deepest level of logic”)

- Our primary focus: comprehension, however,
 - Clever changes to organization can improve performance
 (similar to using better algorithms in software)
 - we’ll look at two examples for addition and multiplication
Problem: ripple carry adder is slow

- Is a 32-bit ALU as fast as a 1-bit ALU?
- Is there more than one way to do addition?
 - two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?

\[
\begin{align*}
c_1 &= b_0c_0 + a_0c_0 + a_0b_0 \\
c_2 &= b_1c_1 + a_1c_1 + a_1b_1 \\
c_3 &= b_2c_2 + a_2c_2 + a_2b_2 \\
c_4 &= b_3c_3 + a_3c_3 + a_3b_3
\end{align*}
\]
Problem: ripple carry adder is slow

Two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?
By successive substitutions of c_{i+1} by c_i

$$c_1 = b_0c_0 + a_0c_0 + a_0b_0$$
$$c_2 = b_1c_1 + a_1c_1 + a_1b_1$$
$$c_2 = (b_0c_0 + a_0c_0 + a_0b_0) b_1 + (b_0c_0 + a_0c_0 + a_0b_0) a_1 + a_1b_1$$
$$= b_0c_0b_1 + a_0c_0b_1 + a_0b_0b_1 + b_0c_0a_1 + a_0c_0a_1$$
$$+ a_0b_0a_1 + a_1b_1$$
$$c_3 = b_2c_2 + a_2c_2 + a_2b_2$$
$$c_3 =$$
$$c_4 = b_3c_3 + a_3c_3 + a_3b_3$$
$$c_4 =$$

Not feasible! Why?
An approach in-between our two extremes

Motivation:
- If we didn’t know the value of carry-in, what could we do?
- When would we always generate a carry? \(g_i = a_i b_i \)
- When would we propagate the carry? \(p_i = a_i + b_i \)

Did we get rid of the ripple?

\[
\begin{align*}
c_1 &= g_0 + p_0 c_0 \\
c_2 &= g_1 + p_1 c_1 \\
c_3 &= g_2 + p_2 c_2 \\
c_4 &= g_3 + p_3 c_3
\end{align*}
\]

Feasible! Why?
Use principle to build bigger adders

- Can’t build a 16 bit adder this way... (too big)
- Could use ripple carry of 4-bit CLA adders
- Better: use the CLA principle again!
Multiplication

- More complicated than addition
 - accomplished via shifting and addition
- More time and more area
- Let’s look at 3 versions based on gradeschool algorithm

\[
\begin{array}{c}
 0010 \quad \text{(multiplicand)} \\
 \underline{\times 1011} \quad \text{(multiplier)}
\end{array}
\]

- Negative numbers: convert and multiply
 - there are better techniques, we won’t look at them
Multiplication: Implementation

1. Test Multiplier
 1a. Add multiplicand to product and place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 1
Multiplier0 = 0

1. Test Multiplier
 1a. Add multiplicand to product and place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

No: < 32 repetitions
Yes: 32 repetitions

Done
Multiplication: Implementation

Multiplicand

ALU

Accumulator

Multiplier

Controller

CNT
Multiplication: Algorithm

Start

Acc: = 0
CNT: = 0
M: = multiplicant (Y)

Q: = Multiplier (X)

Q(7) = 0?

Yes

No

Acc: = Acc(0:7) + M(0:7)

Right SHIFT

CNT = 7?

Yes

OutBUS: = A

OutBUS: = B

Stop

CNT: = CNT + 1
State Control Machine

Transition diagram:
- **S0**: Initialize
 - Transfer into M
- **S1**: Transfer into Q
- **S2**: q=0
- **S3**: q=1
- **S4**: Count=E ND
- **S5**: Move Out Q
- **S6**: Count+1

Actions:
- ADD
- SHIFT
- Move Out ACC
- Move Out Q
Divide 14 = 1110 by 3 = 11. B contains 0011

00000 1110

step 1: Shift

−00011

step 2: subtract

−00010 1100

step 3: result negative; set quotient bit to 0

00001 1100

step 4: restore

00011 100

step 1: shift

−00011

step 2: subtract

00000 1001

step 3: result non-negative; set quotient bit to 1

00001 001

step 1: shift

−00011

step 2: subtract

00010 0010

step 3: result is negative; set quotient bit 0

00001 0010

step 4: restore

00010 010

step 1: shift

−00011

step 2: subtract

00001 0100

step 3: result is negative; set quotient bit to 0

00010 0100

step 4: restore; Quot = 0100, Remainder = 00010
Array Multiplier

\[(x_0 2^2 + x_1 2^1 + x_2 2^0)(y_0 2^2 + y_1 2^1 + y_2 2^0)\]

\[x_0 y_0 2^{(2+2)} + x_0 y_1 2^{(2+1)} + x_0 y_2 2^{(2+0)}\]

\[+ x_1 y_0 2^{(1+2)} + x_1 y_1 2^{(1+1)} + x_1 y_2 2^{(1+0)}\]

\[+ x_2 y_0 2^{(0+2)} + x_2 y_1 2^{(0+1)} + x_2 y_2 2^{(0+0)}\]
AND Array

\[
\begin{array}{ccc}
 & y_0 & y_1 & y_2 \\
 x_2 & & x_2y_0 & x_2y_1 & x_2y_2 \\
x_1 & x_1y_0 & x_1y_1 & & x_1y_2 \\
x_0 & x_0y_0 & x_0y_1 & x_0y_2 & \\
\end{array}
\]
Array Multiplier Basics

Multiplication Time for \(n \)-bit numbers = \(2(n-1) D + D' \)

where \(D \) and \(D' \) are the propagation delays of an Adder and an AND gate.

Component cost ~ \(n^2 \)

ANDs and Adders can combine into a single cell.
Carry–Save Adder – 2 Stages

\[x_0 \, y_0 \quad x_1 \, y_1 \quad x_2 \, y_2 \quad x_3 \, y_3 \]

\[s_0 \quad c_1 \quad s_1 \quad c_2 \quad s_2 \quad c_3 \quad s_3 \]

\[z_0 \quad w_0 \quad z_1 \quad w_1 \quad z_2 \quad w_2 \quad z_3 \]
Carry Save Adder: Basics

The n-bit Carry Save Adder consists of n disjoint Adders

Inputs: 3 n-bit numbers to be added

Outputs: n sum bits (s_k); n carry bits (c_k)

No carry propagation within adder

$m \geq 3$ numbers may be added together by using a tree structure of carry–save adders.
Floating Point (a brief look)

- We need a way to represent
 - numbers with fractions, e.g., 3.1416
 - very small numbers, e.g., .000000001
 - very large numbers, e.g., 3.15576 × 10^9

- Representation:
 - sign, exponent, significand: \((-1)^{\text{sign}} \times \text{significand} \times 2^{\text{exponent}}\)
 - more bits for significand gives more accuracy
 - more bits for exponent increases range

- IEEE 754 floating point standard:
 - single precision: 8 bit exponent, 23 bit significand
 - double precision: 11 bit exponent, 52 bit significand
IEEE 754 floating-point standard

- Leading “1” bit of significand is implicit
- Exponent is “biased” to make sorting easier
 - all 0s is smallest exponent all 1s is largest
 - bias of 127 for single precision and 1023 for double precision
 - summary: \((-1)^{\text{sign}}\times(1+\text{significand})\times2^{\text{exponent} - \text{bias}}\)
- Example:
 - decimal: \(-.75 = -3/4 = -3/2^2\)
 - binary: \(-.11 = -1.1 \times 2^{-1}\)
 - floating point: exponent = 126 = 01111110
 - IEEE single precision: 10111111010000000000000000000000
Floating Point Adder

\[A = a \ 2^p \quad \quad \quad \quad \quad B = b \ 2^q \]

\[A + B = a \ 2^p + b \ 2^q = c \ 2^r \]

\[r = \max \ (p, q) \quad \quad t = |p-q| \quad \quad \min \ (p, q) \]

Algorithm

- Compare \(p \) and \(q \);
- Shift Right fraction of min exponent \(\min(p, q) \) by \(t \);
- Add shifted fraction;
- Count # of zeros, say \(u \); shift left leading zero to norm.

\[\text{Shift Right} = \text{Divide by 2} \quad \quad \text{Shift Left} = \text{Multiply by 2} \]
Floating Point Adder

\[
\begin{align*}
A & \quad p \quad a \\
\text{Function} & \\
& \quad t = |p-q| \\
& \quad r = \max\{p,q\} \\
\text{Shift Right} & \\
B & \quad q \quad b \\
\text{Fraction Select} & \\
& \quad a \text{ or } b \\
& \quad \min\{p,q\} \\
\text{ADD} & \\
C & \quad c \\
\text{Counter} & \\
& \quad u \\
\text{Shift Left} & \\
& \quad d \\
\text{Subtract} & \\
& \quad s \\
\end{align*}
\]

\[C = A + B\]
Floating Point Complexities

- Operations are somewhat more complicated (see text)
- In addition to overflow we can have “underflow”
- Accuracy can be a big problem
 - IEEE 754 keeps two extra bits, guard and round
 - four rounding modes
 - positive divided by zero yields “infinity”
 - zero divide by zero yields “not a number”
 - other complexities
- Implementing the standard can be tricky
- Not using the standard can be even worse
 - see text for description of 80x86 and Pentium bug!
Summary

- Computer arithmetic is constrained by limited precision
- Bit patterns have no inherent meaning but standards do exist
 - two’s complement
 - IEEE 754 floating point
- Computer instructions determine “meaning” of the bit patterns
- Performance and accuracy are important so there are many complexities in real machines (i.e., algorithms and implementation).

- We are ready to move on (and implement the processor)
 you may want to look back (Section 4.12 is great reading!)