LECTURE Simulator 2: Textio, Wait, Clocks, and Test Benches
adder_full_tb_io.vhd: full adder test bench

```vhdl
use STD.TextIO.ALL;
LIBRARY IEEE;
use IEEE.std_logic.all;
use IEEE.std_logic_textio.all;

ENTITY adder_full_tb_io IS
    -- This test bench contains no outputs
END;

Note: in order to use i/o, additional libraries must be included
```
ARCHITECTURE adder_full_tb_io_arch
OF adder_full_tb_io IS

COMPONENT adder_full
 PORT (x, y, Cin: IN std_logic; Sum, Cout: OUT std_logic);
END COMPONENT;

SIGNAL x, y, Cin, Sum, Cout: std_logic;
BEGIN

UUT_ADDER: adder_full PORT MAP(x, y, Cin, Sum, Cout);

adder_full_tb_io.vhd: test case #1

PROCESS

 VARIABLE S: LINE; --used for write line buffer

BEGIN

 -- Test Case #1

 x<= '0'; y<= '1'; Cin<= '0';

 WAIT FOR 5 ns;

 WRITE(S,STRING'(" X="')); WRITE(S, x);
 WRITE(S,STRING'(" Y="')); WRITE(S, y);
 WRITE(S,STRING'(" Cin="')); WRITE(S, Cin);
 WRITE(S,STRING'(" Sum="')); WRITE(S, Sum);
 WRITE(S,STRING'(" Cout="')); WRITE(S, Cout);

 WRITELINE(OUTPUT, S);

CWRU EECS 318
adder_full_tb_io.vhd: test case #2

-- Test Case #2

x <= '1'; y <= '1'; Cin <= '0';
WAIT FOR 5 ns;
WRITE(S, STRING"(" X=")"); WRITE(S, x);
WRITE(S, STRING"(" Y=")"); WRITE(S, y);
WRITE(S, STRING"(" Cin=")"); WRITE(S, Cin);
WRITE(S, STRING"(" Sum=")"); WRITE(S, Sum);
WRITE(S, STRING"(" Cout=")"); WRITE(S, Cout);
WRITELINE(OUTPUT, S);
adder_full_tb_io.vhd: configuration

```
ASSERT FALSE
REPORT "Simulation Done"
SEVERITY ERROR;
END PROCESS;
END ARCHITECTURE;

CONFIGURATION adder_full_tb_io_cfg OF
adder_full_tb_io IS
    FOR adder_full_tb_io_arch
    END FOR;
END CONFIGURATION;
```
VHDL Simulator: running the test bench

Unix> vhdlan -NOEVENT adder_full.vhd
Unix> vhdlan -NOEVENT adder_full_tb_io.vhd
Unix> vhdlsim WORK.adder_full_tb_io_cfg

Is
ADDER_FULL_TB_IO STANDARD ATTRIBUTES
STD_LOGIC_1164 _KERNEL

run
X=0 Y=1 Cin=0 Sum=1 Cout=0
X=1 Y=1 Cin=0 Sum=0 Cout=1
10 NS
Assertion ERROR at 10 NS in design unit
ADDER_FULL_TB_IO(ADDER_FULL_TB_IO_ARCH) from process /ADDER_FULL_TB_IO/_P0:
 "Simulation Done"
quit
ENTITY clock_driver IS
 GENERIC (Speed: TIME := 5 ns);
 PORT (Clk: OUT std_logic);
END;

ARCHITECTURE clock_driver_arch OF clock_driver IS
 SIGNAL Clock: std_logic := '0';
BEGIN
 Clk <= Clk XOR '1' after Speed;
 Clock <= Clk;
END ARCHITECTURE;

CONFIGURATION clock_driver_cfg OF clock_driver IS
 FOR clock_driver_arch END FOR;
END CONFIGURATION;
Team Assignment #5 Test benches (1/2)

- Display all input and output bits
- Three tests with correct results for each test bench
- Cut and Paste the output to a file and print it

System Level: Team member #1 is responsible for
- T101_ALU_BIT_TB.vhd and T101_ALU_TB.vhd

Processor: Team member #2 is responsible for
- T101_FSM_TB.vhd: test bench for add instruction

Memory: Team member #3 is responsible for
- T101_RAM_TB.vhd write and read some words
- T101_ROM_TB.vhd with machine instructions
Team Assignment #5 Test Bench (2/2)

The report should contain the following

- Cover sheet
- Each entity section should have the vhdl, and simulation
- The VHDL test benches for the complete design

- Everything is due Thursday October 26!
Team Assignment #6 System Test Bench

The report should contain the following

- Cover sheet
- Each entity section should have the
 - vhdl, simulation, and synthesis
- The vhdl T101_PU_TB.vhd test benches
 - Simulate the 32 bit add program: output = input + 1
 - Read first byte value from the input port and zero upper 24 bits via lbi’s
 - Load the second value from immediate loads
 - Store the results in the output port
 - Display the output port in the test bench
- Combined report of Assignments #3, #4, #5
- Everything is due Thursday October 26!