SPICE 3 User's Manual - Appendix A


0. TABLE OF CONTENTS 1. INTRODUCTION 2. CIRCUIT DESCRIPTION
3. CIRCUIT ELEMENTS AND MODELS 4. ANALYSES AND OUTPUT CONTROL 5. INTERACTIVE INTERPRETER
6. BIBLIOGRAPHY APPENDIX A APPENDIX B

APPENDIX A: EXAMPLE CIRCUITS

A.1 Circuit 1: Differential Pair

The following deck determines the dc operating point of a simple differential pair. In addition, the ac small-signal response is computed over the frequency range 1Hz to 100MEGHz.
     SIMPLE DIFFERENTIAL PAIR
     VCC  7  0    12
     VEE  8  0    -12
     VIN  1  0    AC 1
     RS1  1  2    1K
     RS2  6  0    1K
     Q1   3  2  4 MOD1
     Q2   5  6  4 MOD1
     RC1  7  3    10K
     RC2  7  5    10K
     RE   4  8    10K
     .MODEL MOD1 NPN BF=50 VAF=50 IS=1.E-12 RB=100 CJC=.5PF TF=.6NS
     .TF V(5) VIN
     .AC DEC 10 1 100MEG
     .END

A.2 Circuit 2: MOSFET Characterization

 The following deck computes the output characteristics of  a
 MOSFET device over the range 0-10V for VDS and 0-5V for VGS.
     MOS OUTPUT CHARACTERISTICS
     .OPTIONS NODE NOPAGE
     VDS  3  0
     VGS  2  0
     M1   1  2  0  0 MOD1 L=4U W=6U AD=10P AS=10P
     * VIDS MEASURES ID, WE COULD HAVE USED VDS, BUT ID WOULD BE NEGATIVE
     VIDS 3  1
     .MODEL MOD1 NMOS VTO=-2 NSUB=1.0E15 UO=550
     .DC VDS 0 10 .5 VGS 0 5 1
     .END

A.3 Circuit 3: RTL Inverter

The following deck determines the dc transfer curve and the transient pulse response of a simple RTL inverter. The input is a pulse from 0 to 5 Volts with delay, rise, and fall times of 2ns and a pulse width of 30ns. The transient interval is 0 to 100ns, with printing to be done every nanosecond.
     SIMPLE RTL INVERTER
     VCC  4  0    5
     VIN  1  0    PULSE 0 5 2NS 2NS 2NS 30NS
     RB   1  2    10K
     Q1   3  2  0 Q1
     RC   3  4    1K
     .MODEL Q1 NPN BF 20 RB 100 TF .1NS CJC 2PF
     .DC VIN 0 5 0.1
     .TRAN 1NS 100NS
     .END

A.4 Circuit 4: Four-Bit Binary Adder

The following deck simulates a four-bit binary adder, using several subcircuits to describe various pieces of the overall circuit.
     ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER

     *** SUBCIRCUIT DEFINITIONS
     .SUBCKT NAND 1 2 3 4
     *   NODES:  INPUT(2), OUTPUT, VCC
     Q1        9  5  1 QMOD
     D1CLAMP   0  1    DMOD
     Q2        9  5  2 QMOD
     D2CLAMP   0  2    DMOD
     RB        4  5    4K
     R1        4  6    1.6K
     Q3        6  9  8 QMOD
     R2        8  0    1K
     RC        4  7    130
     Q4        7  6 10 QMOD
     DVBEDROP 10  3    DMOD
     Q5        3  8  0 QMOD
     .ENDS NAND

     .SUBCKT ONEBIT 1 2 3 4 5 6
     *   NODES:  INPUT(2), CARRY-IN, OUTPUT, CARRY-OUT, VCC
     X1   1  2  7  6   NAND
     X2   1  7  8  6   NAND
     X3   2  7  9  6   NAND
     X4   8  9 10  6   NAND
     X5   3 10 11  6   NAND
     X6   3 11 12  6   NAND
     X7  10 11 13  6   NAND
     X8  12 13  4  6   NAND
     X9  11  7  5  6   NAND
     .ENDS ONEBIT

     .SUBCKT TWOBIT 1 2 3 4 5 6 7 8 9
     *   NODES:  INPUT - BIT0(2) / BIT1(2), OUTPUT - BIT0 / BIT1,
     *           CARRY-IN, CARRY-OUT, VCC
     X1   1  2  7  5 10  9   ONEBIT
     X2   3  4 10  6  8  9   ONEBIT
     .ENDS TWOBIT

     .SUBCKT FOURBIT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
     *   NODES:  INPUT - BIT0(2) / BIT1(2) / BIT2(2) / BIT3(2),
     *           OUTPUT - BIT0 / BIT1 / BIT2 / BIT3, CARRY-IN, CARRY-OUT, VCC
     X1   1  2  3  4  9 10 13 16 15   TWOBIT
     X2   5  6  7  8 11 12 16 14 15   TWOBIT
     .ENDS FOURBIT

     *** DEFINE NOMINAL CIRCUIT
     .MODEL DMOD D
     .MODEL QMOD NPN(BF=75 RB=100 CJE=1PF CJC=3PF)
     VCC   99  0   DC 5V
     VIN1A  1  0   PULSE(0 3 0 10NS 10NS   10NS   50NS)
     VIN1B  2  0   PULSE(0 3 0 10NS 10NS   20NS  100NS)
     VIN2A  3  0   PULSE(0 3 0 10NS 10NS   40NS  200NS)
     VIN2B  4  0   PULSE(0 3 0 10NS 10NS   80NS  400NS)
     VIN3A  5  0   PULSE(0 3 0 10NS 10NS  160NS  800NS)
     VIN3B  6  0   PULSE(0 3 0 10NS 10NS  320NS 1600NS)
     VIN4A  7  0   PULSE(0 3 0 10NS 10NS  640NS 3200NS)
     VIN4B  8  0   PULSE(0 3 0 10NS 10NS 1280NS 6400NS)
     X1     1  2  3  4  5  6  7  8  9 10 11 12  0 13 99 FOURBIT
     RBIT0  9  0   1K
     RBIT1 10  0   1K
     RBIT2 11  0   1K
     RBIT3 12  0   1K
     RCOUT 13  0   1K

     *** (FOR THOSE WITH MONEY (AND MEMORY) TO BURN)
     .TRAN 1NS 6400NS
     .END

A.5 Circuit 5: Transmission-Line Inverter

The following deck simulates a transmission-line inverter. Two transmission-line elements are required since two propagation modes are excited. In the case of a coaxial line, the first line (T1) models the inner conductor with respect to the shield, and the second line (T2) models the shield with respect to the outside world.
     TRANSMISSION-LINE INVERTER
     V1   1  0         PULSE(0 1 0 0.1N)
     R1   1  2         50
     X1   2  0  0  4   TLINE
     R2   4  0         50

     .SUBCKT TLINE 1 2 3 4
     T1   1  2  3  4   Z0=50 TD=1.5NS
     T2   2  0  4  0   Z0=100 TD=1NS
     .ENDS TLINE

     .TRAN 0.1NS 20NS
     .END

0. TABLE OF CONTENTS 1. INTRODUCTION 2. CIRCUIT DESCRIPTION
3. CIRCUIT ELEMENTS AND MODELS 4. ANALYSES AND OUTPUT CONTROL 5. INTERACTIVE INTERPRETER
6. BIBLIOGRAPHY APPENDIX A APPENDIX B